cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104321 Smallest number m such that A104320(m)=n.

Original entry on oeis.org

0, 5, 8, 18, 13, 26, 27, 23, 42, 25, 37, 58, 47, 46, 61, 67, 54, 71, 77, 73, 88, 99, 141, 100, 115, 114, 119, 117, 113, 112, 109, 135, 110, 127, 133, 136, 164, 162, 177, 186, 193, 195, 163, 189, 201, 196, 191, 199, 206, 188, 208, 200, 221, 266, 235, 234, 238, 280
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 01 2005

Keywords

Comments

A104320(a(n))=n and A104320(m)<>n for m
If it exists, a(115) > 10^5. - Michel Marcus, Oct 19 2016

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 0); while (#select(x->(x==0), digits(2^k, 3)) != n, k++); k;} \\ Michel Marcus, Oct 19 2016

A102483 Numbers k such that 2^k contains no zeros in base 3.

Original entry on oeis.org

0, 1, 2, 3, 4, 15
Offset: 1

Author

N. J. A. Sloane, Feb 25 2005

Keywords

Comments

I conjectured in 1973 that there are no further terms. This question is still open.
A104320(a(n)) = 0. - Reinhard Zumkeller, Mar 01 2005
No other terms less than 200000. - Robert G. Wilson v, Dec 06 2005
a(7) > 10^7. - Martin Ehrenstein, Jul 27 2021
If it exists, a(7) > 10^21. - Robert Saye, Mar 23 2022

Crossrefs

Programs

  • Mathematica
    Select[ Range@1000, FreeQ[ IntegerDigits[2^#, 3], 0] &] (* Robert G. Wilson v, Dec 06 2005 *)
  • PARI
    for (n=0, 100, if (vecmin(digits(2^n, 3)), print1(n, ", "))) \\ Michel Marcus, Mar 25 2015

A117970 Position of first 0 counting from the least significant digit in the ternary expansion of 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 2, 2, 4, 4, 5, 4, 2, 2, 4, 0, 3, 4, 2, 2, 3, 3, 8, 3, 2, 2, 5, 5, 6, 5, 2, 2, 11, 4, 3, 5, 2, 2, 3, 3, 11, 3, 2, 2, 5, 8, 4, 5, 2, 2, 13, 5, 3, 5, 2, 2, 3, 3, 4, 3, 2, 2, 4, 4, 7, 4, 2, 2, 4, 6, 3, 4, 2, 2, 3, 3, 7, 3, 2, 2, 6, 6, 7, 6, 2, 2, 10, 4, 3, 7, 2, 2, 3, 3, 5, 3, 2, 2, 11, 5, 4, 17
Offset: 0

Author

Eric W. Weisstein, Apr 06 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { my (p=2^n); for (k=1, oo, if (p==0, return (0), p%3==0, return (k), p\=3)) } \\ Rémy Sigrist, Dec 20 2019

Extensions

Edited by Charles R Greathouse IV, Aug 05 2010
a(0) = 0 prepended by Rémy Sigrist, Dec 20 2019

A260683 Number of 2's in the expansion of 2^n in base 3.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 2, 0, 4, 2, 4, 3, 3, 2, 6, 5, 5, 3, 7, 4, 7, 5, 4, 1, 5, 2, 8, 8, 7, 9, 9, 8, 7, 7, 8, 4, 6, 8, 9, 11, 11, 7, 11, 10, 8, 9, 8, 8, 10, 11, 16, 13, 10, 9, 12, 13, 16, 12, 13, 15, 15, 11, 15, 16, 14, 14, 12, 14, 15, 14, 16, 11, 18, 11, 17, 10
Offset: 0

Author

Emmanuel Vantieghem, Nov 15 2015

Keywords

Comments

Erdős conjectures that a(n) > 0 for n > 8.

Examples

			For n=5, the expansion of 2^n in number base 3 is 1012, thus: a(n)=1
For n=10, the expansion of 2^n in number base 3 is 1101221, thus: a(n)=2
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B33. [Does not seem to be in section B33.]

Crossrefs

Cf. A004642 (2^n in base 3), A020915 (number of terms), A036461 (number of 1's), A104320 (number of 0's).
Cf. A000108 (conjecture that A000108(n) is 6m+1 only for n = 0, 1 and 5 follows from Erdős's one).
Cf. A005836 (for numbers with no 2 in base 3).

Programs

  • Maple
    seq(numboccur(2, convert(2^n,base,3)),n=0..100); # Robert Israel, Nov 15 2015
  • Mathematica
    S={};n=-1;While[n<150,n++;A=IntegerDigits[2^n,3];k=Count[A,2];AppendTo[S, k]];S
  • PARI
    c(k, d, b) = {my(c=0, f); while (k>b-1, f=k-b*(k\b); if (f==d, c++); k\=b); if (k==d, c++); return(c)}
    for(n=0, 300, print1(c(2^n, 2, 3)", ")) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    a(n) = #select(x->(x==2), digits(2^n, 3)); \\ Michel Marcus, Nov 28 2018
    
  • PARI
    a(n) = hammingweight(digits(2^n, 3)\2); \\ Ruud H.G. van Tol, May 09 2024
    
  • Perl
    use ntheory ":all"; sub a260683 { scalar grep { $==2 } todigits(vecprod((2) x shift), 3) } # _Dana Jacobsen, Aug 16 2016

Formula

a(n) = A020915(n) - A104320(n) - A036461(n). - Altug Alkan, Nov 15 2015
a(n) = A081603(A000079(n)). - Michel Marcus, Dec 03 2015

A346497 List of powers of 2 written in base 3 which contain no zero digits.

Original entry on oeis.org

1, 2, 11, 22, 121, 1122221122
Offset: 1

Author

Rafael Castro Couto, Jul 20 2021

Keywords

Comments

The listed terms are the base-3 expansions of 1, 2, 4, 8, 16, and 32768.
The program shows that there are no other terms less than 2^1000.
a(7) > 2^(10^7). - Martin Ehrenstein, Jul 27 2021
If it exists, a(7) > 2^(10^21). - Robert Saye, Mar 23 2022

References

  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers" (1997), p. 123.

Crossrefs

Cf. A102483, A004642 (all powers of 2 in base 3), A104320 (number of zeros in ternary representation of 2^n), A130693 (same problem in base 10).

Programs

  • Mathematica
    pwr = 1; Do[pwr = Mod[2*pwr, 3^100]; d = Union[IntegerDigits[pwr, 3]]; If[Intersection[d, {0}] == {}, Print[IntegerString[pwr, 3]]], {n, 10000000}] (* Ricardo Bittencourt, Jul 07 2021 *)
    Select[Table[FromDigits[IntegerDigits[2^n,3]],{n,0,100}],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Feb 18 2025 *)

Formula

a(n) = A007089(2^A102483(n)). - Michel Marcus, Jul 23 2021

A036461 Number of 1 digits in base 3 representation of 2^n.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 2, 2, 4, 0, 4, 2, 4, 2, 6, 4, 2, 4, 6, 2, 6, 4, 6, 4, 8, 2, 10, 4, 4, 8, 6, 8, 8, 8, 8, 6, 10, 8, 10, 10, 6, 6, 12, 8, 10, 14, 8, 10, 10, 12, 16, 8, 12, 18, 10, 10, 14, 10, 14, 14, 16, 10, 16, 12, 16, 16, 14, 16, 14, 18, 20, 12, 20, 10, 22, 12, 26, 8, 20, 12, 22, 14, 16
Offset: 0

Keywords

Comments

The number of 1's in the base 3 representation of any even(odd) number is even(odd).

Crossrefs

Cf. A020915 (number of digits), A104320 (number of 0's), A260683 (number of 2's).

Programs

  • Maple
    seq(numboccur(1,convert(2^n,base,3)),n=0..100); # Robert Israel, Apr 04 2018
  • Mathematica
    Table[DigitCount[2^n,3,1],{n,0,120}]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n) = #select(x->(x==1), digits(2^n, 3)); \\ Michel Marcus, Apr 04 2018

A036462 Conjecturally, a power of 2 written in base 3 cannot have this many 0's.

Original entry on oeis.org

115, 124, 139, 243, 367, 445, 783, 914, 958, 1095, 1112, 1200, 1239, 1312, 1487, 1752, 1902, 2013, 2504, 2583, 2620, 2697, 2725, 2754, 2881, 3015, 3365, 3443, 3612, 3673, 3980, 3984, 4002, 4105, 4184, 4212, 4315, 4343, 4394, 4477, 4516, 4862, 4918, 5100
Offset: 1

Keywords

Comments

Conjecture 1: Sequence A104320 never obtains the values in this sequence, so A104321(a(n)) is undefined. Conjecture 2: This sequence is infinite. - David W. Wilson, Oct 21 2016, edited by Antti Karttunen, Oct 29 2016

Crossrefs

Showing 1-7 of 7 results.