A104457 Decimal expansion of 1 + phi = phi^2 = (3 + sqrt(5))/2.
2, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8
Offset: 1
Examples
2.6180339887498948482045868343656381177203091798...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.17.1, p. 153.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
- Damien Roy. Diophantine Approximation in Small Degree. Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes. Volume 36 (2004), 269-285.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Murray Berg, Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers, Fibonacci Quarterly, Vol. 4, No. 2 (1966), pp. 157-162.
- John Hawkes et al., Question 1029, The Mathematical Questions Proposed in the Ladies' Diary (1817), p. 339. Originally published 1798 and answered in 1799.
- Casey Mongoven, Phi^2 number 1; electronic music created using Phi^2.
- Hideyuki Ohtsuka, Problem B-1237, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 56, No. 4 (2018), p. 366; A Telescoping Product, Solution to Problem B-1237 by Steve Edwards, ibid., Vol. 57, No. 4 (2019), pp. 369-370.
- Damien Roy, Diophantine Approximation in Small Degree, arXiv:math/0303150 [math.NT], 2003.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial.
- Eric Weisstein's World of Mathematics, Fibonacci Hyperbolic Functions.
- Wikipedia, Perron number.
- Dmitrij Zelo, Simultaneous Approximation to Real and p-adic Numbers, arXiv:0903.0086 [math.NT], 2009.
- Index entries for algebraic numbers, degree 2.
- Index entries for sequences related to moment of inertia.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); (1+Sqrt(5))^2/4; // G. C. Greubel, Nov 23 2018
-
Mathematica
RealDigits[N[GoldenRatio+1,200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
-
PARI
(3+sqrt(5))/2 \\ Charles R Greathouse IV, Aug 21 2012
-
Sage
numerical_approx(golden_ratio^2, digits=100) # G. C. Greubel, Nov 23 2018
Formula
Satisfies these three equations: x-sqrt(x)-1 = 0; x-1/sqrt(x)-2 = 0; x^2-3*x+1 = 0. - Richard R. Forberg, Oct 11 2014
Equals the nested radical sqrt(phi^2+sqrt(phi^4+sqrt(phi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (5*(2*n)!+8*n!^2)/(2*n!^2*3^(2*n+1)).
Equals 3/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals Product_{k>=1} 1 + 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals lim_{n->oo} S(n, 3)/S(n-1, 3) with the S-Chebyshev polynomials (see A049310), S(3, n) = A000045(2*(n+1)) = A001906(n+1). - Wolfdieter Lang, Nov 15 2023
From Peter Bala, May 08 2024: (Start)
Constant c = 2 + 2*cos(2*Pi/5).
The linear fractional transformation z -> c - c/z has order 5, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/z)))). (End)
Equals Product_{k>=1} (1 + 1/A032908(k)). - Amiram Eldar, Nov 28 2024
Comments