A105198 a(n) = n(n+1)/2 mod 4.
0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
- O. Y. Takeshita and D. J. Costello, Jr., New Deterministic Interleaver Designs for Turbo-Codes, IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 1988-2006, Sept. 2000.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1,-1,1).
Crossrefs
Programs
-
Magma
[ -Ceiling(n/2)*(-1)^n mod 4 : n in [0..100]]; // Wesley Ivan Hurt, Jul 13 2014
-
Maple
for n from 0 to 300 do printf(`%d,`, n*(n+1)/2 mod 4) od: # James Sellers, Apr 21 2005 A105198:=n->-ceil(n/2)*(-1)^n mod 4: seq(A105198(n), n=0..100); # Wesley Ivan Hurt, Jul 13 2014
-
Mathematica
Table[Mod[-Ceiling[n/2] (-1)^n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 13 2014 *)
-
PARI
Vec((x+2*x^2+2*x^4+x^5)/(1-x+x^2-x^3+x^4-x^5+x^6-x^7) + O(x^90)) \\ Michel Marcus, Jul 13 2014
-
Python
def A105198(n): return (n*(n+1)>>1)&3 # Chai Wah Wu, Apr 17 2025
-
Scheme
(define (A105198 n) (modulo (* 1/2 n (+ 1 n)) 4)) ;; Antti Karttunen, Aug 10 2017
Formula
From Paul Barry, Jul 26 2005: (Start)
G.f.: (x + 2x^2 + 2x^4 + x^5)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 3/2. (End)
a(n) = (((n+1)^5 - n^5 - 1) mod 120)/30. - Gary Detlefs, Mar 25 2012
a(n) = -ceiling(n/2)*(-1)^n mod 4. - Wesley Ivan Hurt, Jul 13 2014
Extensions
More terms from James Sellers, Apr 21 2005
Comments