cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105198 a(n) = n(n+1)/2 mod 4.

Original entry on oeis.org

0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0
Offset: 0

Views

Author

Oscar Takeshita, Apr 11 2005

Keywords

Comments

0,1,3,2,2,3,1,0 repeated indefinitely.
If N is any power of 2 then n(n+1)/2 mod N is a repeating pattern of length 2N. Moreover, the first N digits form a permutation P of A={0,1,...,N-1}. The subsequent N digits are P in the reversed order. The technique is useful for the generation of arbitrarily large pseudo-random permutations.

Crossrefs

Cf. triangular numbers A000217, A105332-A105340.
One less than A110549, A133882 shifted once right, with zero inserted to front.

Programs

Formula

From Paul Barry, Jul 26 2005: (Start)
G.f.: (x + 2x^2 + 2x^4 + x^5)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 3/2. (End)
a(n) = (((n+1)^5 - n^5 - 1) mod 120)/30. - Gary Detlefs, Mar 25 2012
a(n) = -ceiling(n/2)*(-1)^n mod 4. - Wesley Ivan Hurt, Jul 13 2014

Extensions

More terms from James Sellers, Apr 21 2005