A062679 Numbers such that every divisor (except 1, but including the number itself) contains the digit 9.
19, 29, 59, 79, 89, 97, 109, 139, 149, 179, 191, 193, 197, 199, 229, 239, 269, 293, 349, 359, 379, 389, 397, 409, 419, 439, 449, 479, 491, 499, 509, 569, 593, 599, 619, 659, 691, 709, 719, 739, 769, 797, 809, 829, 839, 859, 907, 911, 919, 929, 937, 941, 947
Offset: 1
Examples
7961 has divisors 19, 419 and 7961, all of which contain the digit 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [2..1000] | forall{Divisors(n)[i]: i in [2..NumberOfDivisors(n)] | 9 in Intseq(Divisors(n)[i])}]; // Bruno Berselli, Nov 21 2015
-
Mathematica
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1000], fQ[#, 9] &] (* Robert G. Wilson v, Jun 11 2014 *) d9Q[n_]:=First[Union[DigitCount[#,10,9]&/@Rest[Divisors[n]]]]>0; Select[ Range[ 2,1000],d9Q] (* Harvey P. Dale, Sep 12 2014 *)
-
PARI
isok(n) = {if (n==1, return (0)); d = divisors(n); for (k=1, #d, if ((d[k] != 1) && (vecmax(digits(d[k])) != 9), return (0));); return (1);} \\ Michel Marcus, Nov 21 2015
Comments