cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A269100 a(n) = 13*n + 11.

Original entry on oeis.org

11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0

Views

Author

Bruno Berselli, Feb 19 2016

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 11, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
Sequences of the type 13*n + k, for k = 0..12, without squares and cubes:
k = 2: A153080,
k = 6: A186113,
k = 7: A269044,
k = 11: this case.
The sum of the sixth powers of any two terms of the sequence is also a term of the sequence. Example: a(3)^6 + a(8)^6 = a(179129674278) = 2328685765625.
The primes of the sequence are listed in A140373.

Crossrefs

Subsequence of A094784, A106389.
Cf. A140373.
Similar sequences of the type k*n+k-2: A023443 (k=1), A005843 (k=2), A016777 (k=3), A016825 (k=4), A016885 (k=5), A016957 (k=6), A017041 (k=7), A017137 (k=8), A017245 (k=9), A017365 (k=10), A017497 (k=11), A017641 (k=12).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), this sequence (q=11).

Programs

  • Magma
    [13*n+11: n in [0..60]];
  • Mathematica
    13 Range[0,60] + 11
    Range[11, 800, 13]
    Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
    LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
  • Maxima
    makelist(13*n+11, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+11)
    
  • Python
    [13*n+11 for n in range(61)]
    
  • Sage
    [13*n+11 for n in range(61)]
    

Formula

G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A106388 Numbers k such that 11k = 6j^2 + 6j + 1.

Original entry on oeis.org

11, 23, 131, 167, 383, 443, 767, 851, 1283, 1391, 1931, 2063, 2711, 2867, 3623, 3803, 4667, 4871, 5843, 6071, 7151, 7403, 8591, 8867, 10163, 10463, 11867, 12191, 13703, 14051, 15671, 16043, 17771, 18167, 20003, 20423, 22367, 22811, 24863, 25331, 27491, 27983
Offset: 1

Views

Author

Pierre CAMI, May 01 2005

Keywords

Comments

j sequence = A106387

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{11,23,131,167,383},50] (* Harvey P. Dale, Jul 26 2018 *)
  • PARI
    Vec((11+12*x+86*x^2+12*x^3+11*x^4)/(1+x)^2/(1-x)^3+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011

Formula

a(1)=11, a(2)=23; if n odd a(n)=a(n-1)+54*(n-1), if n even a(n)=a(n-1)+12*(n-1).
a(n) = (66*n*(n-1)-21*(2*n-1)*(-1)^n+23)/4.
G.f.: x*(11+12*x+86*x^2+12*x^3+11*x^4)/((1+x)^2*(1-x)^3).
a(n)-a(n-1)-2*a(n-2)+2*a(n-3)+a(n-4)-a(n-5) = 0 for n>5.

Extensions

Formulae corrected and added by Bruno Berselli, Nov 16 2010
More terms from Colin Barker, Apr 16 2014

A106387 Numbers j such that 6j^2 + 6j + 1 = 11k.

Original entry on oeis.org

4, 6, 15, 17, 26, 28, 37, 39, 48, 50, 59, 61, 70, 72, 81, 83, 92, 94, 103, 105, 114, 116, 125, 127, 136, 138, 147, 149, 158, 160, 169, 171, 180, 182, 191, 193, 202, 204, 213, 215, 224, 226, 235, 237, 246, 248, 257, 259, 268, 270, 279, 281, 290, 292, 301, 303
Offset: 1

Views

Author

Pierre CAMI, May 01 2005

Keywords

Comments

k sequence = A106388.

Crossrefs

Programs

Formula

j(1)=4, j(2)=6 then j(n)=j(n-2)+11.
a(n) = 11*n - a(n-1) - 12 (with a(1)=4). - Vincenzo Librandi, Nov 13 2010
a(2k-1) = 11k - 7, a(2k) = 11k - 5. - Ralf Stephan, Nov 15 2010
From Bruno Berselli, Nov 16 2010: (Start)
a(n) = (22*n - 7*(-1)^n - 13)/4.
G.f.: x*(4+2*x+5*x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) - a(n-2) = 11 for n > 2.
a(n) - 2*a(n-1) + a(n-2) = -7*(-1)^n for n > 2. (End)

A106390 Numbers k such that 13k = 6j^2 + 6j + 1.

Original entry on oeis.org

1, 61, 97, 277, 349, 649, 757, 1177, 1321, 1861, 2041, 2701, 2917, 3697, 3949, 4849, 5137, 6157, 6481, 7621, 7981, 9241, 9637, 11017, 11449, 12949, 13417, 15037, 15541, 17281, 17821, 19681, 20257, 22237, 22849, 24949, 25597, 27817, 28501, 30841
Offset: 1

Views

Author

Pierre CAMI, May 01 2005

Keywords

Crossrefs

For j sequence see A106389.

Programs

  • Mathematica
    f[n_] := Block[{k = (6n(n + 1) + 1)/13}, If[ IntegerQ[k], k, 1]]; Union[ Table[ f[n], {n, 270}]] (* Robert G. Wilson v, May 02 2005 *)
  • PARI
    Vec(-x*(x^4+60*x^3+34*x^2+60*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 16 2014

Formula

a(1)=1, a(2)=61; for odd n a(n) = a(n-1)+18*(n-1), for even n a(n) = a(n-1)+60*(n-1).
a(n) = (25-21*(-1)^n+6*(-13+7*(-1)^n)*n+78*n^2)/4. - Colin Barker, Apr 16 2014
G.f.: -x*(x^4+60*x^3+34*x^2+60*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 16 2014

Extensions

More terms from Robert G. Wilson v, May 02 2005
Showing 1-4 of 4 results.