A106608 a(n) = numerator of n/(n+7).
0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16, 17, 18, 19, 20, 3, 22, 23, 24, 25, 26, 27, 4, 29, 30, 31, 32, 33, 34, 5, 36, 37, 38, 39, 40, 41, 6, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 8, 57, 58, 59, 60, 61, 62, 9, 64, 65, 66, 67, 68, 69, 10, 71, 72, 73, 74, 75, 76
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).
Crossrefs
Programs
-
GAP
List([0..80],n->NumeratorRat(n/(n+7))); # Muniru A Asiru, Feb 19 2019
-
Magma
[Numerator(n/(n+7)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
seq(numer(n/(n+7)),n=0..80); # Muniru A Asiru, Feb 19 2019
-
Mathematica
f[n_]:=Numerator[n/(n+7)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
-
PARI
vector(100, n, n--; numerator(n/(n+7))) \\ G. C. Greubel, Feb 19 2019
-
Sage
[lcm(n,7)/7 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
Formula
G.f.: x/(1-x)^2 - 6*x^7/(1-x^7)^2. - Paul D. Hanna, Jul 27 2005
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109048(n)/7.
Dirichlet g.f.: zeta(s-1)*(1-6/7^s).
Multiplicative with a(p^e) = p^e if p<>7, a(7^e) = 7^(e-1) if e > 0. (End)
Sum_{k=1..n} a(k) ~ (43/98) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 13*log(2)/7. - Amiram Eldar, Sep 08 2023
Comments