cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106612 a(n) = numerator(n/(n+11)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 11 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. A109052, A137564 (differs, e.g., for n=100).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106611 (k = 7 thru 10), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+11))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+11)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq(numer(n/(n+11)),n=0..80); # Muniru A Asiru, Feb 19 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+11)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1},{0,1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,19,20,21},80] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+11))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,11)/11 for n in range(0, 54)] # Zerinvary Lajos, Jun 09 2009
    

Formula

G.f.: x/(1-x)^2 - 10*x^11/(1-x^11)^2. - Paul D. Hanna, Jul 27 2005
a(n) = lcm(n,11)/11.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109052(n)/11.
Dirichlet g.f.: zeta(s-1)*(1-10/11^s). (End)
a(n) = 2*a(n-11) - a(n-22). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(11^e) = 11^(e-1), and a(p^e) = p^e if p != 11.
Sum_{k=1..n} a(k) ~ (111/242) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 21*log(2)/11. - Amiram Eldar, Sep 08 2023