cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091067 Numbers whose odd part is of the form 4k+3.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31, 35, 38, 39, 43, 44, 46, 47, 48, 51, 54, 55, 56, 59, 60, 62, 63, 67, 70, 71, 75, 76, 78, 79, 83, 86, 87, 88, 91, 92, 94, 95, 96, 99, 102, 103, 107, 108, 110, 111, 112, 115, 118, 119, 120, 123, 124, 126, 127, 131
Offset: 1

Views

Author

Ralf Stephan, Feb 22 2004

Keywords

Comments

Either of form 2*a(m) or 4k+3, k >= 0, 0 < m < n.
A000265(a(n)) is an element of A004767.
a(n) such that A038189(a(n)) = 1.
Numbers n such that Kronecker(-n, m) = Kronecker(m, n) for all m. - Michael Somos, Sep 22 2005
From Antti Karttunen, Feb 20-21 2015: (Start)
Gives all n for which A005811(n) - A005811(n-1) = -1, from which follows that a(n) = the least k such that A255070(k) = n.
Gives the positions of even terms in A003602. (End)
Indices of negative terms in A164677. - M. F. Hasler, Aug 06 2015
Indices of the 0's in A014577. - Gabriele Fici, Jun 02 2016
Also indices of -1 in A034947. - Jianing Song, Apr 24 2021
Conjecture: alternate definition of same sequence is that a(1)=3 and a(n) is the smallest number > a(n-1) so that no number that is the sum of at most 2 terms in this sequence is a power of 2. - J. Lowell, Jan 20 2024
The asymptotic density of this sequence is 1/2. - Amiram Eldar, Aug 31 2024

Crossrefs

Essentially one less than A060833.
Characteristic function: A038189.
Complement of A091072.
First differences are in A106836 (from its second term onward).
Sequence A246590 gives the even terms.
Gives the positions of records (after zero) for A255070 (equally, the position of the first n there).
Cf. A106837 (gives n such that both n and n+1 are terms of this sequence).
Cf. A098502 (gives n such that both n and n+2 are, but n+1 is not in this sequence).

Programs

  • Haskell
    import Data.List (elemIndices)
    a091067 n = a091067_list !! (n-1)
    a091067_list = map (+ 1) $ elemIndices 1 a014707_list
    -- Reinhard Zumkeller, Sep 28 2011
    (Scheme, with Antti Karttunen's IntSeq-library, two versions)
    (define A091067 (MATCHING-POS 1 1 (COMPOSE even? A003602)))
    (define A091067 (NONZERO-POS 1 0 A038189))
    ;; Antti Karttunen, Feb 20 2015
  • Mathematica
    Select[Range[150], Mod[# / 2^IntegerExponent[#, 2], 4] == 3 &] (* Amiram Eldar, Aug 31 2024 *)
  • PARI
    for(n=1,200,if(((n/2^valuation(n,2)-1)/2)%2,print1(n",")))
    
  • PARI
    {a(n) = local(m, c); if( n<1, 0, c=0; m=1; while( cMichael Somos, Sep 22 2005 */
    
  • PARI
    is_A091067(n)=bittest(n,valuation(n,2)+1) \\ M. F. Hasler, Aug 06 2015
    
  • PARI
    a(n) = my(t=1); n<<=1; forstep(i=logint(n,2),0,-1, if(bittest(n,i)==t, n++;t=!t)); n; \\ Kevin Ryde, Mar 21 2021
    

Formula

a(n) = A060833(n+1) - 1. [See N. Sato's Feb 12 2013 comment in A060833.]
Other identities. For all n >= 1 it holds that:
A014707(a(n) + 1) = 1. - Reinhard Zumkeller, Sep 28 2011
A055975(a(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
From Antti Karttunen, Feb 20-21 2015: (Start)
a(n) = A246590(n)/2.
A255070(a(n)) = n, or equally, A236840(a(n)) = 2n.
a(n) = 1 + A255068(n-1). (End)

A106836 First differences of A060833 and (from a(2) onward) also of A091067 and A255068.

Original entry on oeis.org

3, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Ralf Stephan, May 03 2005

Keywords

Comments

From Antti Karttunen, Feb 20 2015: (Start)
Among the terms a(1) .. a(8192), 1 occurs 4095 times, 2 occurs 1024 times, 3 occurs 2048 times and 4 occurs 1025 times. No larger numbers can ever occur.
That these are the first differences of not just A091067 and A255068, but also of A060833 follows from N. Sato's Feb 12 2013 comment in the latter that "For n > 1, n is in the sequence (A060833) if and only if A038189(n-1) = 1."
Also length of runs in A236840 and A255070.
(End)

Crossrefs

Programs

Formula

a(1) = 3, and for n > 1: a(n) = A091067(n) - A091067(n-1). - Antti Karttunen, Feb 20 2015

Extensions

Name edited by Antti Karttunen, Feb 20 2015

A106838 Numbers m such that m, m+1 and m+2 have odd part of the form 4*k+3.

Original entry on oeis.org

22, 46, 54, 86, 94, 110, 118, 150, 174, 182, 190, 214, 222, 238, 246, 278, 302, 310, 342, 350, 366, 374, 382, 406, 430, 438, 446, 470, 478, 494, 502, 534, 558, 566, 598, 606, 622, 630, 662, 686, 694, 702, 726, 734, 750, 758, 766, 790, 814, 822, 854, 862
Offset: 1

Views

Author

Ralf Stephan, May 03 2005

Keywords

Comments

Either of form 2a(m)+2 or 32k+22, k>=0, 0
Number points of the Heighway/Harter dragon curve starting m=0 at the origin. Those m with odd part 4k+3 (A091067) are where the curve turns right. So this sequence is the first m of each run of 3 consecutive right turns. There are no runs of 4 or more since the turn at odd m alternates left and right. Bates, Bunder, and Tognetti (Theorem 19, page 104), show the last of each run is integers of the form 2^p*(4k+3) with p>=3. So here the first of each run is a(n) = 8*A091067(n)-2 as Ralf Stephan already noted. - Kevin Ryde, Mar 12 2020
The asymptotic density of this sequence is 1/16. - Amiram Eldar, Sep 14 2024

Examples

			22/2=11 is 3 mod 4 and so is 23 and 24/8=3, thus 22 is in sequence.
		

Crossrefs

Programs

  • Mathematica
    opm4[n_]:=Mod[n/2^IntegerExponent[n,2],4]; Flatten[Position[Partition[ Table[opm4[n],{n,1000}],3,1],{3,3,3}]] (* Harvey P. Dale, Feb 01 2014 *)

Formula

a(n) = 8*A091067(n) - 2.

A106840 Numbers m such that both m and m+1 have odd part of the form 4*k+1.

Original entry on oeis.org

1, 4, 8, 9, 16, 17, 20, 25, 32, 33, 36, 40, 41, 49, 52, 57, 64, 65, 68, 72, 73, 80, 81, 84, 89, 97, 100, 104, 105, 113, 116, 121, 128, 129, 132, 136, 137, 144, 145, 148, 153, 160, 161, 164, 168, 169, 177, 180, 185, 193, 196, 200, 201, 208, 209, 212, 217, 225
Offset: 1

Author

Ralf Stephan, May 03 2005

Keywords

Comments

From Amiram Eldar, Sep 14 2024: (Start)
Disjoint union of A017077 and {4*A091072(n)}.
The asymptotic density of this sequence is 1/4. (End)

Examples

			20/4 = 5 == 1 (mod 4) and also 21 == 1 (mod 4), therefore 20 is in the sequence.
		

Crossrefs

Contains A106841 and A106841+1.

Programs

  • Mathematica
    f[n_] := Mod[n / 2^IntegerExponent[n, 2] - 1, 4]; SequencePosition[Array[f, 250], {0, 0}][[;;,1]] (* Amiram Eldar, Sep 14 2024 *)
Showing 1-4 of 4 results.