cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107066 Expansion of 1/(1-2*x+x^5).

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 82392, 158816, 306128, 590081, 1137418, 2192444, 4226072, 8146016, 15701951, 30266484, 58340524, 112454976, 216763936, 417825921, 805385358, 1552430192, 2992405408, 5768046880
Offset: 0

Views

Author

Paul Barry, May 10 2005

Keywords

Comments

Row sums of number triangle A107065.
Same as A018922 plus first 3 additional terms. - Vladimir Joseph Stephan Orlovsky, Jul 08 2011
a(n) is the number of binary words of length n containing no subword 01011. - Alois P. Heinz, Mar 14 2012

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 31*x^5 + 60*x^6 + 116*x^7 + 224*x^8 + ...
		

Crossrefs

Cf. A018922, A119407 (partial sums), A000078 (first differences).
Cf. A209888. - Alois P. Heinz, Mar 14 2012
Column k = 1 of array A140996 (with a different offset) and second main diagonal of A140995.
Column k = 4 of A172119 (with a different offset).

Programs

  • GAP
    a:=[1,2,4,8,16];; for n in [6..40] do a[n]:=2*a[n-1]-a[n-5]; od; a; # G. C. Greubel, Jun 12 2019
  • Magma
    I:=[1,2,4,8,16]; [n le 5 select I[n] else 2*Self(n-1) - Self(n-5): n in [1..40]]; // G. C. Greubel, Jun 12 2019
    
  • Mathematica
    CoefficientList[Series[1/(1 - 2*z + z^5), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
    LinearRecurrence[{2,0,0,0,-1}, {1,2,4,8,16}, 40] (* G. C. Greubel, Jun 12 2019 *)
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( -x^5 / (1 - 2*x^4 + x^5) + x * O(x^n), n), polcoeff( 1 / (1 - 2*x + x^5) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */
    
  • Sage
    (1/(1-2*x+x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
    

Formula

a(n) = 2*a(n-1) - a(n-5).
a(n) = Sum_{k=0..floor(n/5)} C(n-4*k, k) * 2^(n-2*k) *(-1)^k.
a(n) = A018922(n-3) for n >= 3. - R. J. Mathar, Mar 09 2007
First difference of A119407. - Michael Somos, Dec 28 2012
From Petros Hadjicostas, Jun 12 2019: (Start)
G.f.: 1/((1 - x)*(1 - x - x^2 - x^3 - x^4)).
Setting k = 1 in the double recurrence for array A140996, we get that a(n+5) = 1 + a(n+1) + a(n+2) + a(n+3) + a(n+4) for n >= 0, which of course we can prove using other methods as well. See also Dunkel (1925).
(End)
a(n) = Sum_{k=0..n+3} A000078(k). - Greg Dresden, Jan 01 2021