cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A107584 a(n) = 4^n - 4*n.

Original entry on oeis.org

1, 0, 8, 52, 240, 1004, 4072, 16356, 65504, 262108, 1048536, 4194260, 16777168, 67108812, 268435400, 1073741764, 4294967232, 17179869116, 68719476664, 274877906868, 1099511627696, 4398046511020, 17592186044328, 70368744177572, 281474976710560, 1125899906842524
Offset: 0

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Numbers a(n) = k such that number m with n 4's and k 1's has digit product = digit sum = 4^n.

Examples

			Corresponding numbers m are 1, 4, 1111111144, ...
		

Crossrefs

Programs

Formula

From Harvey P. Dale, Oct 21 2011: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) with a(0)=1, a(1)=0, and a(2)=8.
G.f.: (-17*x^2+6*x-1)/((x-1)^2*(4*x-1)). (End)
E.g.f.: exp(x)*(exp(3*x) - 4*x). - Elmo R. Oliveira, Sep 10 2024

Extensions

More terms from Vincenzo Librandi, Dec 16 2010
Corrected by Charles R Greathouse IV, Sep 08 2012

A107585 a(n) = 5^n - 5*n.

Original entry on oeis.org

1, 0, 15, 110, 605, 3100, 15595, 78090, 390585, 1953080, 9765575, 48828070, 244140565, 1220703060, 6103515555, 30517578050, 152587890545, 762939453040, 3814697265535, 19073486328030, 95367431640525, 476837158203020, 2384185791015515, 11920928955078010, 59604644775390505, 298023223876953000
Offset: 0

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Numbers a(n) = k such that the number m with n 5's and k 1's has digit product = digit sum = 5^n.

Examples

			Corresponding numbers m are 1, 5, 11111111111111155, ...
		

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), n >= 3. - Vincenzo Librandi, Oct 26 2011
G.f.: (-1-26*x^2+7*x)/((5*x-1)*(x-1)^2). - R. J. Mathar, Oct 26 2011
E.g.f.: exp(x)*(exp(4*x) - 5*x). - Elmo R. Oliveira, Sep 10 2024

Extensions

Corrected by Charles R Greathouse IV, Sep 08 2012

A221905 a(n) = 3^n + 3*n.

Original entry on oeis.org

1, 6, 15, 36, 93, 258, 747, 2208, 6585, 19710, 59079, 177180, 531477, 1594362, 4783011, 14348952, 43046769, 129140214, 387420543, 1162261524, 3486784461, 10460353266, 31381059675, 94143178896, 282429536553, 847288609518, 2541865828407, 7625597485068, 22876792455045
Offset: 0

Views

Author

Vincenzo Librandi, Mar 02 2013

Keywords

Crossrefs

Programs

  • Magma
    [3^n+3*n: n in [0..30]];
    
  • Magma
    I:=[1, 6, 15]; [n le 3 select I[n] else 5*Self(n-1)-7*Self(n-2)+3*Self(n-3): n in [1..30]];
  • Mathematica
    Table[(3^n + 3 n), {n, 0, 30}] (* or *) CoefficientList[Series[(1 + x - 8 x^2)/((1 - x)^2 (1 -3 x)), {x, 0, 30}], x]

Formula

G.f.: (1 + x - 8*x^2)/((1-x)^2*(1-3*x)).
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
a(n) = A176805(n) - 1.
E.g.f.: exp(x)*(exp(2*x) + 3*x). - Elmo R. Oliveira, Sep 10 2024

A294619 a(0) = 0, a(1) = 1, a(2) = 2 and a(n) = 1 for n > 2.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of (sqrt(5) + 1)/(2*sqrt(5)).
Inverse binomial transform is {0, 1, 4, 10, 21, 41, 78, 148, ...}, A132925 with one leading zero.
Also the main diagonal in the expansion of (1 + x)^n - 1 + x^2 (A300453).
The partial sum of this sequence is A184985.
a(n) is the number of state diagrams having n components that are obtained from an n-foil [(2,n)-torus knot] shadow. Let a shadow diagram be the regular projection of a mathematical knot into the plane, where the under/over information at every crossing is omitted. A state for the shadow diagram is a diagram obtained by merging either of the opposite areas surrounding each crossing.
a(n) satisfies the identities a(n)^a(n+k) = a(n), 2^a(k) = 2*a(k) and a(k)! = a(k), k > 0.
Also the number of non-isomorphic simple connected undirected graphs with n+1 edges and a longest path of length 2. - Nathaniel Gregg, Nov 02 2021

Examples

			For n = 2, the shadow of the Hopf link yields 2 two-component state diagrams (see example in A300453). Thus a(2) = 2.
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • L. H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
  • V. Manturov, Knot Theory, CRC Press, 2004.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + x^2 - x^3)/(1 - x), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 05 2017 *)
    f[n_] := If[n > 2, 1, n]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 27 2017 *)
    PadRight[{0,1,2},120,{1}] (* Harvey P. Dale, Feb 20 2023 *)
  • Maxima
    makelist((1 + (-1)^((n + 1)!))/2 + kron_delta(n, 2), n, 0, 100);
  • PARI
    a(n) = if(n>2, 1, n);
    

Formula

a(n) = ((-1)^2^(n^2 + 3*n + 2) + (-1)^2^(n^2 - n) - (-1)^2^(n^2 - 3*n + 2) + 1)/2.
a(n) = (1 + (-1)^((n + 1)!))/2 + Kronecker(n, 2).
a(n) = min(n, 3) - 2*(max(n - 2, 0) - max(n - 3, 0)).
a(n) = floor(F(n+1)/F(n)) for n > 0, with a(0) = 0, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) for n > 3, with a(0) = 0, a(1) = 1, a(2) = 2 and a(3) = 1.
A005803(a(n)) = A005096(a(n)) = A000007(n).
A107583(a(n)) = A103775(n+5).
a(n+1) = 2^A185012(n+1), with a(0) = 0.
a(n) = A163985(n) mod A004278(n+1).
a(n) = A157928(n) + A171386(n+1).
a(n) = A063524(n) + A157928(n) + A185012(n).
a(n) = A010701(n) - A141044(n) - A179184(n).
G.f.: (x + x^2 - x^3)/(1 - x).
E.g.f.: (2*exp(x) - 2 + x^2)/2.

A198396 a(n) = 6^n - 6*n.

Original entry on oeis.org

1, 0, 24, 198, 1272, 7746, 46620, 279894, 1679568, 10077642, 60466116, 362796990, 2176782264, 13060693938, 78364164012, 470184984486, 2821109907360, 16926659444634, 101559956668308, 609359740010382, 3656158440062856, 21936950640377730, 131621703842267004, 789730223053602678
Offset: 0

Views

Author

Vincenzo Librandi, Oct 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [6^n-6*n: n in [0..25]];
    
  • Mathematica
    CoefficientList[Series[(1 - 8*x + 37*x^2)/((1 - 6*x)*(1 -x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    Table[6^n-6n,{n,0,30}] (* or *) LinearRecurrence[{8,-13,6},{1,0,24},30] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    a(n)=6^n-6*n \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n > 2.
G.f.: (1-8*x+37*x^2)/((1-6*x)*(1-x)^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(exp(5*x) - 6*x). - Elmo R. Oliveira, Sep 10 2024

A198397 a(n) = 7^n - 7*n.

Original entry on oeis.org

1, 0, 35, 322, 2373, 16772, 117607, 823494, 5764745, 40353544, 282475179, 1977326666, 13841287117, 96889010316, 678223072751, 4747561509838, 33232930569489, 232630513987088, 1628413597910323, 11398895185373010, 79792266297611861, 558545864083283860, 3909821048582987895
Offset: 0

Views

Author

Vincenzo Librandi, Oct 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [7^n-7*n: n in [0..25]];
    
  • Mathematica
    CoefficientList[Series[(1 - 9*x + 50*x^2)/((1 - 7*x)*(1 -x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
  • PARI
    a(n)=7^n-7*n \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3) for n > 2.
G.f.: (1 - 9*x + 50*x^2)/((1 - 7*x)*(1 -x)^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(exp(6*x) - 7*x). - Elmo R. Oliveira, Sep 10 2024

A198398 a(n) = 8^n - 8n.

Original entry on oeis.org

1, 0, 48, 488, 4064, 32728, 262096, 2097096, 16777152, 134217656, 1073741744, 8589934504, 68719476640, 549755813784, 4398046510992, 35184372088712, 281474976710528, 2251799813685112, 18014398509481840, 144115188075855720, 1152921504606846816, 9223372036854775640
Offset: 0

Views

Author

Vincenzo Librandi, Oct 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n-8*n: n in [0..25]];
    
  • Mathematica
    CoefficientList[Series[(1 - 10*x + 65*x^2)/((1 - 8*x)*(1 -x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    LinearRecurrence[{10,-17,8},{1,0,48},30] (* Harvey P. Dale, Mar 13 2023 *)
  • PARI
    a(n)=8^n-8*n \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3) for n > 2.
G.f.: (1 - 10*x + 65*x^2)/((1 - 8*x)*(1 -x)^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(exp(7*x) - 8*x). - Elmo R. Oliveira, Sep 10 2024

A198399 a(n) = 9^n - 9*n.

Original entry on oeis.org

1, 0, 63, 702, 6525, 59004, 531387, 4782906, 43046649, 387420408, 3486784311, 31381059510, 282429536373, 2541865828212, 22876792454835, 205891132094514, 1853020188851697, 16677181699666416, 150094635296998959, 1350851717672991918, 12157665459056928621, 109418989131512359020
Offset: 0

Views

Author

Vincenzo Librandi, Oct 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n-9*n: n in [0..25]];
    
  • Mathematica
    CoefficientList[Series[(1 - 11*x + 82*x^2)/((1 - 9*x)*(1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
  • PARI
    a(n)=9^n-9*n \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(0)=1, a(1)=0, a(2)=63, a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
G.f.: (1 - 11*x + 82*x^2)/((1 - 9*x)*(1 - x)^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(exp(8*x) - 9*x). - Elmo R. Oliveira, Sep 09 2024

A198400 a(n) = 10^n - 10*n.

Original entry on oeis.org

1, 0, 80, 970, 9960, 99950, 999940, 9999930, 99999920, 999999910, 9999999900, 99999999890, 999999999880, 9999999999870, 99999999999860, 999999999999850, 9999999999999840, 99999999999999830, 999999999999999820, 9999999999999999810, 99999999999999999800, 999999999999999999790
Offset: 0

Views

Author

Vincenzo Librandi, Oct 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [10^n-10*n: n in [0..25]];
    
  • Mathematica
    CoefficientList[Series[(1-12*x+101*x^2)/((1-10*x)*(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
  • PARI
    a(n)=10^n-10*n \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n > 2.
G.f.: (1-12*x+101*x^2)/((1-10*x)*(1-x)^2). - Vincenzo Librandi, Jul 06 2012
E.g.f.: exp(x)*(exp(9*x) - 10*x). - Elmo R. Oliveira, Aug 29 2024

A165624 a(n) = 3^(3^n)/(3^n)^3.

Original entry on oeis.org

3, 1, 27, 387420489, 834385168331080533771857328695283, 6076396096647706909168138770838836135530328017648434830996201971201776350890241322455818405320466786549738961
Offset: 0

Views

Author

Keywords

Examples

			a(0) = 3^1/1^3 = 3. a(1) = 3^3/3^3 = 1. a(2) = 3^9/9^3 = 27.
		

Crossrefs

Programs

  • Mathematica
    Table[3^(3^n)/(3^n)^3,{n,0,6}] (* Harvey P. Dale, Sep 17 2019 *)

Formula

a(n) = 3^A107583(n). [R. J. Mathar, Oct 07 2009]

Extensions

Definition simplified by R. J. Mathar, Oct 07 2009
Showing 1-10 of 10 results.