cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108211 a(n) = 16*n^2 + 1.

Original entry on oeis.org

17, 65, 145, 257, 401, 577, 785, 1025, 1297, 1601, 1937, 2305, 2705, 3137, 3601, 4097, 4625, 5185, 5777, 6401, 7057, 7745, 8465, 9217, 10001, 10817, 11665, 12545, 13457, 14401, 15377, 16385, 17425, 18497, 19601, 20737, 21905, 23105, 24337, 25601, 26897, 28225, 29585
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 15 2005

Keywords

Comments

Area of a Maltese cross conventionally inscribed in a 5n X 5n-grid.
Areas of some other crosses, each made from unit squares, as shown in Weisstein's illustrations: Greek Cross = x-pentomino = 5. Latin Cross = 6. Saint Andrew's cross = crux decussata = 9. Saint Anthony's Cross = tau cross = crux commissa = 10. Gaullist Cross = cross of Lorraine or patriarchal cross = 13. Papal Cross = 22. - Jonathan Vos Post, Jun 18 2005
The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as a(n)^2 - A158488(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 08 2012
Sequence found by reading the line from 17, in the direction 17, 65, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Conjecture: a(n) = floor(1/(1/(4*n) - log(2) + 1/(n+1) + 1/(n+2) + ... + 1/(2*n))). - Clark Kimberling, Sep 09 2014

Crossrefs

Programs

Formula

a(n) = A002522(4*n) = A016802(n) + 1.
G.f.: x*(17+14*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 08 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*coth(Pi/4)/8 - 1/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - Pi*csch(Pi/4)/8. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/4)*sinh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/4)*csch(Pi/4). (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(16*x^2 + 16*x + 1) - 1.
a(n) = A053755(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)