A108211 a(n) = 16*n^2 + 1.
17, 65, 145, 257, 401, 577, 785, 1025, 1297, 1601, 1937, 2305, 2705, 3137, 3601, 4097, 4625, 5185, 5777, 6401, 7057, 7745, 8465, 9217, 10001, 10817, 11665, 12545, 13457, 14401, 15377, 16385, 17425, 18497, 19601, 20737, 21905, 23105, 24337, 25601, 26897, 28225, 29585
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Maltese Cross.
- Eric Weisstein's World of Mathematics, Gaullist Cross.
- Eric Weisstein's World of Mathematics, Greek Cross.
- Eric Weisstein's World of Mathematics, Latin Cross.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[17, 65, 145]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012
-
Maple
A108211:=n->16*n^2+1: seq(A108211(n), n=1..50); # Wesley Ivan Hurt, Sep 24 2014
-
Mathematica
LinearRecurrence[{3, -3, 1}, {17, 65, 145}, 40] (* Vincenzo Librandi, Feb 08 2012 *) 16*Range[50]^2+1 (* Harvey P. Dale, Jun 06 2025 *)
-
PARI
a(n)= 16*n^2+1 \\ Charles R Greathouse IV, Dec 23 2011
Formula
G.f.: x*(17+14*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 08 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*coth(Pi/4)/8 - 1/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - Pi*csch(Pi/4)/8. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/4)*sinh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/4)*csch(Pi/4). (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(16*x^2 + 16*x + 1) - 1.
a(n) = A053755(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments