A108411 a(n) = 3^floor(n/2). Powers of 3 repeated.
1, 1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0
Examples
a(6) = 27; 3^floor(6/2) = 3^floor(3) = 3^3 = 27.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- D. A. Gewurz and F. Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seq., 6 (2003), 03.1.6.
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Crossrefs
Programs
-
Haskell
a108411 = (3 ^) . flip div 2 -- Reinhard Zumkeller, May 01 2014
-
Magma
[3^Floor(n/2): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
-
Maple
A108411:=n->3^floor(n/2); seq(A108411(k), k=0..100); # Wesley Ivan Hurt, Nov 01 2013
-
Mathematica
Table[3^Floor[n/2], {n,0,100}] (* Wesley Ivan Hurt, Nov 01 2013 *)
-
PARI
a(n)=3^floor(n/2);
-
Python
def A108411(n): return 3**(n>>1) # Chai Wah Wu, Oct 28 2024
Formula
O.g.f.: (1+x)/(1-3*x^2). - R. J. Mathar, Apr 01 2008
a(n) = 3^(n/2)*((1+(-1)^n)/2+(1-(-1)^n)/(2*sqrt(3))). - Paul Barry, Nov 12 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (-1)^n*sum(A158020(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Dec 01 2011
a(n) = sum(A152815(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013
a(n) = 3^A004526(n). - Michel Marcus, Aug 30 2014
E.g.f.: cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022
Extensions
Incorrect formula removed by Michel Marcus, Oct 06 2021
Comments