A109043 a(n) = lcm(n,2).
0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Dorin Andrica, Sorin Rădulescu, and George Cătălin Ţurcaş, The Exponent of a Group: Properties, Computations and Applications, Disc. Math. and Applications, Springer, Cham (2020), 57-108.
- Piotr Miska, Arithmetic properties of the sequence of derangements, Journal of Number Theory, Vol. 163 (2016), pp. 114-145; arXiv preprint, arXiv:1508.01987 [math.NT], 2015. See p. 124 (p. 14 in the preprint).
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
- Index entries for sequences related to lcm's.
Crossrefs
Programs
-
Haskell
a109043 = (lcm 2) a109043_list = zipWith (*) [0..] a000034_list -- Reinhard Zumkeller, Mar 31 2012
-
Magma
[0, 2, 2] cat [Exponent(DihedralGroup(n)) : n in [3..65]]; // Arkadiusz Wesolowski, Sep 10 2013
-
Mathematica
LCM[Range[0,70],2] (* Harvey P. Dale, Aug 19 2012 *)
-
PARI
a(n)=lcm(n,2) \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A109043(n): return n<<1 if n&1 else n # Chai Wah Wu, Aug 05 2024
-
Sage
[lcm(n,2) for n in range(0, 68)] # Zerinvary Lajos, Jun 07 2009
Formula
a(n) = n*2 / gcd(n, 2).
a(n) = -(n*((-1)^n-3))/2. - Stephen Crowley, Feb 11 2007
From R. J. Mathar, Aug 20 2008: (Start)
a(n) = A066043(n), n > 1.
a(n) = 2*A026741(n).
G.f.: 2*x(1+x+x^2)/((1-x)^2*(1+x)^2). (End)
a(n) = n*A000034(n). - Paul Curtz, Mar 25 2011
E.g.f.: x*(2*cosh(x) + sinh(x)). - Stefano Spezia, May 09 2021
Sum_{k=1..n} a(k) ~ (3/4) * n^2. - Amiram Eldar, Nov 26 2022
Comments