cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A111592 Admirable numbers. A number n is admirable if there exists a proper divisor d' of n such that sigma(n)-2d'=2n, where sigma(n) is the sum of all divisors of n.

Original entry on oeis.org

12, 20, 24, 30, 40, 42, 54, 56, 66, 70, 78, 84, 88, 102, 104, 114, 120, 138, 140, 174, 186, 222, 224, 234, 246, 258, 270, 282, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 582, 606, 618, 642, 644, 650, 654, 672, 678, 762, 786, 812
Offset: 1

Views

Author

Jason Earls, Aug 09 2005

Keywords

Comments

All admirable numbers are abundant.
If 2^n-2^k-1 is an odd prime then m=2^(n-1)*(2^n-2^k-1) is in the sequence because 2^k is one of the proper divisors of m and sigma(m)-2m=(2^n-1)*(2^n-2^k)-2^n*(2^n-2^k-1)=2^k hence m=(sigma(m)-m)-2^k, namely m is an Admirable number. This is one of the results of the following theorem that I have found. Theorem: If 2^n-j-1 is an odd prime and m=2^(n-1)*(2^n-j-1) then sigma(m)-2m=j. The case j=0 is well known. - Farideh Firoozbakht, Jan 28 2006
In particular, these numbers have abundancy 2 to 3: 2 < sigma(n)/n <= 3. - Charles R Greathouse IV, Jan 30 2014
Subsequence of A083207. - Ivan N. Ianakiev, Mar 20 2017
The concept of admirable numbers was developed by educator Jerome Michael Sachs (1914-2012) for a television in-service training course in mathematics for elementary school teachers. - Amiram Eldar, Aug 22 2018
Odd terms are listed in A109729. For abundant nonsquares, it is equivalent to say sigma(n)/2 - n divides n. For squares, sigma(n)/2 - n is half-integer, but n could still be an integer multiple. This first occurs for n = m^2 with even m = 2^k*(2^(2*k+1)-1), k = 1, 2, 3, 6, ... (A146768), and odd m = 13167. - M. F. Hasler, Jan 26 2020

Examples

			12 = 1+3+4+6-2, 20 = 2+4+5+10-1, etc.
		

Crossrefs

Subsequence of A005101 (abundant numbers).
Cf. A000396 (perfect numbers), A005100 (deficient numbers), A000203 (sigma), A061645.
Cf. A109729 (odd admirable numbers).

Programs

  • Maple
    with(numtheory); isadmirable := proc(n) local b, d, S; b:=false; S:=divisors(n) minus {n}; for d in S do if sigma(n)-2*d=2*n then b:=true; break fi od; return b; end: select(proc(z) isadmirable(z) end, [$1..1000]); # Walter Kehowski, Aug 12 2005
  • Mathematica
    fQ[n_] := Block[{d = Most[Divisors[n]], k = 1}, l = Length[d]; s = Plus @@ d; While[k < l && s - 2d[[k]] > n, k++ ]; If[k > l || s != n + 2d[[k]], False, True]]; Select[ Range[821], fQ[ # ] &] (* Robert G. Wilson v, Aug 13 2005 *)
    Select[Range[812],MemberQ[Most[Divisors[#]],(DivisorSigma[1,#]-2*#)/2]&] (* Ivan N. Ianakiev, Mar 23 2017 *)
  • PARI
    for(n=1,10^3,ap=sigma(n)-2*n;if(ap>0 && (ap%2)==0,d=ap/2;if(d!=n && (n%d)==0, print1(n",")))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
    
  • PARI
    is(n)=if(issquare(n)||issquare(n/2),0,my(d=sigma(n)/2-n); d>0 && d!=n && n%d==0) \\ Charles R Greathouse IV, Jun 21 2011

Extensions

Better definition from Walter Kehowski, Aug 12 2005

A329188 Odd unitary admirable numbers: the odd terms of A328328.

Original entry on oeis.org

80535, 354585, 403095, 430815, 437745, 442365, 5388495, 6126645, 9338595, 36340395, 130689195, 747242265, 1335049485, 2224695165, 4085490255, 9665740455, 10394173335, 11534750535, 13837748925, 33378237165, 73088757105, 94849396005, 109544822205, 216654032595
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2019

Keywords

Comments

Of the first 10^4 unitary admirable numbers only 6 are odd.
a(21) > 6*10^10.

Crossrefs

The unitary version of A109729.
Intersection of A005408 and A328328.
Subsequence of A129485.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); uadmQ[n_] := (ab = usigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && CoprimeQ[2*n/ab, ab/2]; s = {}; Do[If[uadmQ[n], AppendTo[s, n]], {n, 1, 10^6, 2}]; s

Extensions

Data corrected by Amiram Eldar, May 12 2020
Terms a(21) and beyond from Giovanni Resta, May 12 2020

A334973 Odd bi-unitary admirable numbers: the odd terms of A334972.

Original entry on oeis.org

945, 43065, 46035, 48195, 80535, 354585, 403095, 430815, 437745, 442365, 458055, 2305875, 3525795, 4404105, 4891887, 5388495, 5803245, 6126645, 6220665, 6375105, 6537375, 7853625, 7981875, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 13351635, 23760555
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 bi-unitary admirable numbers only 11 are odd.

Crossrefs

The bi-unitary version of A109729.
Intersection of A005408 and A334972.
Subsequence of A293186.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]

A334975 Odd infinitary admirable numbers: the odd terms of A334974.

Original entry on oeis.org

945, 43065, 46035, 80535, 354585, 403095, 430815, 437745, 442365, 2305875, 3525795, 4404105, 4891887, 5388495, 5927985, 6126645, 6220665, 6375105, 6537375, 7853625, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 23760555, 33381855, 34592805, 35642295
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 infinitary admirable numbers only 9 are odd.

Crossrefs

The infinitary version of A109729.
Intersection of A005408 and A334974.
Subsequence of A127666.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], infAdmQ]

A364727 Numbers k such that k and k+1 are both admirable numbers (A111592).

Original entry on oeis.org

29691198404, 478012798575, 2789405835075, 22929723392715
Offset: 1

Views

Author

Amiram Eldar, Aug 05 2023

Keywords

Comments

a(1)-a(2) were found by Giovanni Resta.

Crossrefs

Subsequence of A096399 and A111592.

Extensions

a(4) from Martin Ehrenstein, Aug 06 2023

A336681 Odd exponential admirable numbers: the odd terms of A336680.

Original entry on oeis.org

6485886225, 71344748475, 110260065825, 123231838275, 125730522225, 149175383175, 162485579025, 185601564225, 188090700525, 191620685025, 195686793225, 201062472975, 239977790325, 265921335225, 278893107675, 304836652575, 343751969925, 395639059725, 434554377075
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Exponential admirable numbers that are odd are relatively rare: there are 5742336 even exponential admirable numbers that are smaller than the first odd term, i.e., a(1) = A336680(5742337).

Examples

			6485886225 is a term since 6485886225 = 80535 + 241605 + ... + (-8456175) + ... + 2161962075 is the sum of its proper exponential divisors with one of them, 8456175, taken with a minus sign.
		

Crossrefs

The exponential version of A109729.
Intersection of A005408 and A336680.
Subsequence of A321147.
Similar sequences: A329188, A334973, A334975.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[1, 10^9, 2], expAdmQ]
Showing 1-6 of 6 results.