cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111297 First differences of A109975.

Original entry on oeis.org

1, 2, 5, 11, 24, 52, 112, 240, 512, 1088, 2304, 4864, 10240, 21504, 45056, 94208, 196608, 409600, 851968, 1769472, 3670016, 7602176, 15728640, 32505856, 67108864, 138412032, 285212672, 587202560, 1207959552, 2483027968, 5100273664
Offset: 0

Views

Author

Paul Curtz, Jun 07 2007

Keywords

Examples

			    11 = 2 *    5 +   1;
    24 = 2 *   11 +   2;
    52 = 2 *   24 +   4;
   112 = 2 *   52 +   8;
   240 = 2 *  112 +  16;
   512 = 2 *  240 +  32;
  1088 = 2 *  512 +  64;
  2304 = 2 * 1088 + 128; ...
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 5, 11]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 27 2012
    
  • Maple
    1,2, seq((n+8)*2^(n-3), n = 2..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    CoefficientList[Series[(1-2x+x^2-x^3)/(1-2x)^2, {x,0,40}], x]  (* Vincenzo Librandi, Jun 27 2012 *)
    LinearRecurrence[{4,-4},{1,2,5,11},40] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    a=[1,2,5,11]; for(i=1,99,a=concat(a,4*a[#a]-4*a[#a-1])); a \\ Charles R Greathouse IV, Jun 01 2011
    
  • SageMath
    [(n+8)*2^(n-3) - int(n==1)/4 for n in range(40)] # G. C. Greubel, Sep 27 2022

Formula

Equals binomial transform of [1, 1, 2, 1, 3, 1, 4, 1, 5, ...] - Gary W. Adamson, Apr 25 2008
From Paul Barry, Mar 18 2009: (Start)
G.f.: (1-2*x+x^2-x^3)/(1-2*x)^2.
a(n) = Sum_{k=0..n} C(n,k)*Sum_{j=0..floor(k/2)} C(j+1,k-j).
a(n) = Sum_{k=0..n} C(n,k)*A158416(k). (End)
a(n) = Sum_{k=0..n-2} (k+5)*binomial(n-2,k) for n >= 2. - Philippe Deléham, Apr 20 2009
a(n) = 2*a(n-1) + 2^(n-3) for n > 2, a(0) = 1, a(1) = 2, a(2) = 5. - Philippe Deléham, Mar 02 2012
G.f.: Q(0), where Q(k) = 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 24 2013
From Amiram Eldar, Jan 13 2021: (Start)
a(n) = (n+8) * 2^(n-3), for n >= 2.
Sum_{n>=0} 1/a(n) = 2048*log(2) - 893149/630.
Sum_{n>=0} (-1)^n/a(n) = 523549/630 - 2048*log(3/2). (End)
E.g.f.: (1/4)*((4+x)*exp(2*x) - x). - G. C. Greubel, Sep 27 2022

A158416 Expansion of g.f. (1+x-x^3)/(1-x^2)^2.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1
Offset: 0

Views

Author

Paul Barry, Mar 18 2009

Keywords

Comments

Binomial transform is A111297. Binomial transform of [1,1,1,2,1,3,1,...] is A109975.
Essentially the same as A152271 and A133622. - R. J. Mathar, Mar 20 2009
Also defined by: a(0)=1; thereafter, a(n) = number of copies of a(n-1) in the list [a(0), a(1), ..., a(n-1)]. - N. J. A. Sloane, Feb 12 2016

Crossrefs

Related to A268696.

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^3)/(1-x^2)^2,{x,0,100}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,1,2,1},100] (* Harvey P. Dale, Aug 17 2016 *)
  • PARI
    a(n)=1+!(n%2)*n/2 \\ Jaume Oliver Lafont, Mar 21 2009

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(k+1,n-k).
G.f.: Q(0)/x - 1/x, where Q(k)= 1 + (k+1)*x/(1 - x/(x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
E.g.f.: cosh(x) + (2 + x)*sinh(x)/2. - Stefano Spezia, Sep 06 2023
Showing 1-2 of 2 results.