A142150 The nonnegative integers interleaved with 0's.
0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Reinhard Zumkeller, Logical Convolutions
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Haskell
a142150 = uncurry (*) . (`divMod` 2) . (+ 1) a142150_list = scanl (+) 0 a001057_list -- Reinhard Zumkeller, Apr 02 2012
-
Magma
[n*(1+(-1)^n)/4 : n in [0..100]]; // Wesley Ivan Hurt, Aug 21 2014
-
Magma
&cat[[n, 0]: n in [0..50]]; // Vincenzo Librandi, Oct 31 2016
-
Maple
A142150:=n->n*(1+(-1)^n)/4: seq(A142150(n), n=0..100); # Wesley Ivan Hurt, Aug 21 2014
-
Mathematica
Table[Mod[Floor[n^2/2], n], {n, 200}] (* Enrique Pérez Herrero, Jul 29 2009 *) Riffle[Range[0, 50], 0] (* Paolo Xausa, Feb 08 2024 *)
-
PARI
a(n)=!bittest(n,0)*n>>1 \\ M. F. Hasler, May 10 2015
-
Python
def A142150(n): return (n+1>>1)*(n&1^1) # Chai Wah Wu, Jan 19 2023
Formula
a(n) = XOR{k AND (n-k): 0<=k<=n}.
a(n) = (n/2)*0^(n mod 2); a(2*n)=n and a(2*n+1)=0.
a(n) = floor(n^2/2) mod n. - Enrique Pérez Herrero, Jul 29 2009
a(n) = A027656(n-2). - Reinhard Zumkeller, Nov 05 2009
a(n) = Sum_{k=0..n} (k mod 2)*((n-k) mod 2). - Reinhard Zumkeller, Nov 05 2009
a(n+1) = A000217(n) mod A000027(n+1) = A000217(n) mod A001477(n+1). - Edgar Almeida Ribeiro (edgar.a.ribeiro(AT)gmail.com), May 19 2010
From Bruno Berselli, Oct 19 2010: (Start)
a(n) = n*(1+(-1)^n)/4.
G.f.: x^2/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) for n > 3.
Sum_{i=0..n} a(i) = (2*n*(n+1)+(2*n+1)*(-1)^n-1)/16 (see A008805). (End)
a(n) = Sum_{i=1..n} floor((2*i-n)/2). - Wesley Ivan Hurt, Aug 21 2014
a(n-1) = floor(n/2)*(n mod 2), where (n mod 2) is the parity of n, or remainder of division by 2. - M. F. Hasler, May 10 2015
a(n) = A158416(n) - 1. - Filip Zaludek, Oct 30 2016
E.g.f.: x*sinh(x)/2. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A000007(a(n-1)) + a(n-2) for n > 1. - Nicolas Bělohoubek, Oct 06 2024
Comments