cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097076 Expansion of g.f. x/(1 - x - 3*x^2 - x^3).

Original entry on oeis.org

0, 1, 1, 4, 8, 21, 49, 120, 288, 697, 1681, 4060, 9800, 23661, 57121, 137904, 332928, 803761, 1940449, 4684660, 11309768, 27304197, 65918161, 159140520, 384199200, 927538921, 2239277041, 5406093004, 13051463048, 31509019101, 76069501249, 183648021600
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Counts walks of length n between two vertices of a triangle, when a loop has been added at the third vertex.
a(n) is the center term of the 3 X 3 matrix [0,1,0; 0,0,1; 1,3,1]^n. - Gary W. Adamson, May 30 2008
Starting (1, 1, 4, 8, 21, ...) = row sums of triangle A157898. - Gary W. Adamson, Mar 08 2009
Convolution of Pell(n) = A000129(n) and (-1)^n. - Paul Barry, Oct 22 2009
a(n+1) is the number of ways to choose points on a 2 X n lattice eliminating the upper left and lower right corners such that the points are not adjacent to each other. (See A375726 for proof) - Yifan Xie, Aug 25 2024
a(n+1) is the number of compositions (ordered partitions) of n into parts 1, 2, and 3 where there are three kinds of part 2. - Joerg Arndt, Aug 27 2024

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n,-1), 2) -2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[x/(1-x-3x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,1},{0,1,1},40]  (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • SageMath
    [(lucas_number2(n,2,-1) -2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n - 2*(-1)^n )/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3). [corrected by Paul Curtz, Mar 04 2008]
a(n) = (Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k)/2 - (-1)^n/2.
a(n) = (A001333(n) - (-1)^n)/2.
a(n) = Sum_{k=0..n} (-1)^k*Pell(n-k). - Paul Barry, Oct 22 2009
From R. J. Mathar, Jul 06 2011: (Start)
G.f.: x / ( (1+x)*(1-2*x-x^2) ).
a(n) + a(n+1) = A000129(n+1). (End)
E.g.f.: (exp(x)*cosh(sqrt(2)*x) - cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 31 2024

A086346 On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.

Original entry on oeis.org

1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given corner square m (m = 1, 3, 7, 9). To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the king's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
Inverse binomial transform of A079291 (without the leading 0).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array counting king walks on an n X n board with k steps, starting from a corner:
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...;
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, ...;
1, 3, 18, 105, 615, 3600, 21075, 123375, 722250, 4228125, 24751875, ...;
1, 3, 18, 105, 684, 4359, 28278, 182349, 1179792, 7622667, 49283802, ...;
1, 3, 18, 105, 684, 4550, 30807, 209867, 1434279, 9815190, 67209723, ...;
1, 3, 18, 105, 684, 4550, 31340, 218056, 1533712, 10829360, 76720288, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1559835, 11177190, 80573373, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11259785, 81765550, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82025163, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
The partial sums along the rows are documented in A123109 (king walks with between 1 and k steps). (End)

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]

Crossrefs

Programs

  • Magma
    [2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    with(LinearAlgebra):
    nmax:=19; m:=1;
    A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
    A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
    for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
    LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
  • SageMath
    [2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
    

Formula

a(n) = (1/32)*(2*(-2)^(n+2) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3).
G.f.: (1+x) / ( (1+2*x)*(1-4*x-4*x^2) ).
a(n) = (2*A057087(n-1) + 3*A057087(n) + (-2)^n)/4. (End)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
a(n) = A110048(n) + A110048(n-1). - R. J. Mathar, Mar 08 2021
a(n) = 2^(n-3)*(A002203(n+2) + 2*(-1)^n). - G. C. Greubel, Aug 18 2022

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A110050 Expansion of (2+9*x-24*x^3+16*x^4-30*x^2) / ((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)).

Original entry on oeis.org

2, 19, 73, 369, 1697, 8241, 39441, 190609, 918929, 4437649, 21421201, 103433361, 499397777, 2411316369, 11642774673, 56216331409, 271436096657, 1310609581201, 6328181400721, 30555163403409, 147533373973649
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Crossrefs

Programs

  • Maple
    seriestolist(series((2+9*x-24*x^3+16*x^4-30*x^2)/((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -kbasejrokseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; RokType: Y[15] = Y[15] + 1/2
  • PARI
    Vec((2 + 9*x - 30*x^2 - 24*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x - 4*x^2)) + O(x^25)) \\ Colin Barker, May 11 2019

Formula

a(n) = 5*a(n-1) + 4*a(n-2) - 24*a(n-3) + 16*a(n-5) for n>4. - Colin Barker, May 11 2019

A110046 Expansion of (1+4*x-12*x^2-16*x^3)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)).

Original entry on oeis.org

1, 8, 28, 144, 656, 3200, 15296, 73984, 356608, 1722368, 8313856, 40144896, 193826816, 935886848, 4518821888, 21818834944, 105350496256, 508677324800, 2456110759936, 11859152338944, 57261050298368, 276480810549248
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Crossrefs

Programs

  • Maple
    seriestolist(series((1+4*x-12*x^2-16*x^3)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
  • Mathematica
    CoefficientList[Series[(1+4x-12x^2-16x^3)/((2x+1)(2x-1)(4x^2+4x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{4,8,-16,-16},{1,8,28,144},40] (* Harvey P. Dale, Jun 12 2016 *)
  • PARI
    Vec((1 + 4*x - 12*x^2 - 16*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, May 01 2019

Formula

From Colin Barker, May 01 2019: (Start)
a(n) = ((2 - 2*sqrt(2))^(1+n) + 2*(-(-2)^n + 2^n + 2^n*(1+sqrt(2))^(1+n))) / 4.
a(n) = 4*a(n-1) + 8*a(n-2) - 16*a(n-3) - 16*a(n-4) for n>3.
(End)

A110047 Expansion of (1+2*x-4*x^2)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)).

Original entry on oeis.org

1, 6, 28, 144, 688, 3360, 16192, 78336, 378112, 1826304, 8817664, 42577920, 205582336, 992649216, 4792926208, 23142334464, 111741042688, 539533639680, 2605098729472, 12578530000896, 60734514921472, 293252181786624, 1415946786832384, 6836795882864640
Offset: 0

Views

Author

Creighton Dement, Jul 10 2005

Keywords

Comments

Note (see program code): ibaseseq[A*B] = A057087, basejseq[A*B] = A099582, tesseq[A*B] = A110046.

Crossrefs

Programs

  • Maple
    seriestolist(series((1+2*x-4*x^2)/((2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -kbasekseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 4 x^2)/((2 x + 1)(2 x - 1)(4 x^2 + 4 x - 1)), {x, 0, 21}], x] (* or *)
    LinearRecurrence[{4, 8, -16, -16}, {1, 6, 28, 144}, 22] (* Michael De Vlieger, Feb 17 2017 *)
  • PARI
    Vec((1+2*x-4*x^2) / ((2*x+1)*(2*x-1)*(4*x^2+4*x-1)) + O(x^30)) \\ Colin Barker, Feb 17 2017

Formula

a(n) = 4*a(n-1) + 8*a(n-2) - 16*a(n-3) - 16*a(n-4). - Matthew House, Feb 17 2017
a(n) = (-3*(2-2*sqrt(2))^n*(-2+sqrt(2)) + 2^n*(-2*(1+(-1)^n)+3*(1+sqrt(2))^n*(2+sqrt(2)))) / 8. - Colin Barker, Feb 17 2017

Extensions

Definition corrected by Matthew House, Feb 17 2017
Showing 1-5 of 5 results.