A110501 Unsigned Genocchi numbers (of first kind) of even index.
1, 1, 3, 17, 155, 2073, 38227, 929569, 28820619, 1109652905, 51943281731, 2905151042481, 191329672483963, 14655626154768697, 1291885088448017715, 129848163681107301953, 14761446733784164001387, 1884515541728818675112649, 268463531464165471482681379
Offset: 1
Examples
E.g.f.: x*tan(x/2) = x^2/2! + x^4/4! + 3*x^6/6! + 17*x^8/8! + 155*x^10/10! + ... O.g.f.: A(x) = x + x^2 + 3*x^3 + 17*x^4 + 155*x^5 + 2073*x^6 + ... where A(x) = x + x^2/(1+x) + 2!^2*x^3/((1+x)*(1+4*x)) + 3!^2*x^4/((1+x)*(1+4*x)*(1+9*x)) + 4!^2*x^5/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) + ... . - _Paul D. Hanna_, Jul 21 2011 From _Gary W. Adamson_, Jul 19 2011: (Start) The first few rows of production matrix M are: 1, 2, 0, 0, 0, 0, ... 1, 3, 3, 0, 0, 0, ... 1, 4, 6, 4, 0, 0, ... 1, 5, 10, 10, 5, 0, ... 1, 6, 15, 20, 15, 6, ... (End)
References
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. MR0297697 (45 #6749)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- Leonhard Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
- A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2 (1999) p. 74; see Problem 5.8.
Links
- Alan Sokal, Table of n, a(n) for n = 1..250 (terms up to a(100) from Alois P. Heinz)
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, to appear in Involve
- F. Alayont, R. Moger-Reischer and R. Swift, Rook Number Interpretations of Generalized Central Factorial and Genocchi Numbers, preprint, 2012.
- R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.
- A. Ayyer, D. Hathcock and P. Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020.
- Peter Bala, A triangle for calculating the Genocchi numbers
- Ange Bigeni, A bijection between the irreducible k-shapes and the surjective pistols of height k-1, arXiv preprint arXiv:1402.1383 [math.CO] (2014). Also Discrete Math., 338 (2015), 1432-1448.
- Ange Bigeni, Enumerating the symplectic Dellac configurations, arXiv:1705.03804 [math.CO], 2017.
- Ange Bigeni, The universal sl2 weight system and the Kreweras triangle, arXiv:1712.05475 [math.CO], 2017.
- Ange Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, arXiv:1712.01929 [math.CO], 2017.
- Ange Bigeni, A generalization of the Kreweras triangle through the universal sl_2 weight system, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 309-326.
- A. Burstein, M. Josuat-Vergès and W. Stromquist, New Dumont permutations, Pure Math. Appl. (Pu.M.A.) 21 (2010), no. 2, 177-206.
- E. Clark and R. Ehrenborg, The excedance algebra, Discr. Math., 313 (2013), 1429-1435.
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See pp. 4, 12.
- Bishal Deb, Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants, arXiv:2304.14487 [math.CO], 2023. See pp. 4, 11.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- Dominique Dumont and Dominique Foata, Une propriété de symétrie des nombres de Genocchi Bull. Soc. Math. France 104 (1976), no. 4, 433-451. MR0434830 (55 #7794)
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
- Dominique Dumont and Gérard Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). Ann. Discrete Math. 6 (1980), 77-87. MR0593524 (82j:10024).
- A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv:1210.7396 [math.CO], 2012.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008)
- Sen-Peng Eu, Tung-Shan Fu, Hsin-Hao Lai, and Yuan-Hsun Lo, Gamma-positivity for a Refinement of Median Genocchi Numbers, arXiv:2103.09130 [math.CO], 2021.
- Vincent Froese and Malte Renken, Terrain-like Graphs and the Median Genocchi Numbers, arXiv:2210.16281 [math.CO], 2022.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
- S. W. Golomb and E. C. Posner, Rook Domains, Latin Squares, Affine Planes, and Error-Distributing Codes, Transactions of the Information Theory Group of the IEEE, Vol. 10, No. 3 (1964), 196-208.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Guo-Niu Han and Jing-Yi Liu, Combinatorial proofs of some properties of tangent and Genocchi numbers, European Journal of Combinatorics, Vol. 71 (2018), pp. 99-110; arXiv preprint, arXiv:1707.08882 [math.CO], 2017-2018.
- Florent Hivert and Olivier Mallet, Combinatorics of k-shapes and Genocchi numbers, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 493-504.
- Alexander Lazar and Michelle L. Wachs, The Homogenized Linial Arrangement and Genocchi Numbers, arXiv:1910.07651 [math.CO], 2019.
- Zhicong Lin and Sherry H.F. Yan, Cycles on a multiset with only even-odd drops, arXiv:2108.03790 [math.CO], 2021. See also Disc. Math. (2022) Vol. 345, No. 2, 112683.
- A. H. Morales and D. G. Zhu, On the Okounkov--Olshanski formula for standard tableaux of skew shape, arXiv:2007.05006 [math.CO], 2020.
- Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
- John Riordan and Paul R. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973), 381-388. MR0316372 (47 #4919) - From _N. J. A. Sloane_, Jun 12 2012
- Alan Sokal, Table of n, a(n) for n = 1..10000 [315 MB file]
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 66-67.
Programs
-
Magma
[Abs(2*(4^n-1)*Bernoulli(2*n)): n in [1..20]]; // Vincenzo Librandi, Jul 28 2017
-
Maple
A110501 := proc(n) 2*(-1)^n*(1-4^n)*bernoulli(2*n) ; end proc: seq(A110501(n),n=0..10) ; # R. J. Mathar, Aug 02 2013
-
Mathematica
a[n_] := 2*(4^n - 1) * BernoulliB[2n] // Abs; Table[a[n], {n, 19}] (* Jean-François Alcover, May 23 2013 *)
-
PARI
{a(n) = if( n<1, 0, 2 * (-1)^n * (1 - 4^n) * bernfrac( 2*n))};
-
PARI
{a(n) = if( n<1, 0, (2*n)! * polcoeff( x * tan(x/2 + x * O(x^(2*n))), 2*n))};
-
PARI
{a(n)=polcoeff(sum(m=0,n,m!^2*x^(m+1)/prod(k=1,m, 1+k^2*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 21 2011 */
-
PARI
upto(n) = my(v1, v2, v3); v1 = vector(n, i, 0); v1[1] = 1; v2 = vector(n-1, i, ((i+1)^2)\4); v3 = v1; for(i=2, n, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 28 2025
-
Python
from sympy import bernoulli def A110501(n): return ((2<<(m:=n<<1))-2)*abs(bernoulli(m)) # Chai Wah Wu, Apr 14 2023
-
Sage
# Algorithm of L. Seidel (1877) # n -> [a(1), ..., a(n)] for n >= 1. def A110501_list(n) : D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1 R = [] ; b = True for i in(0..2*n-1) : h = i//2 + 1 if b : for k in range(h-1,0,-1) : D[k] += D[k+1] else : for k in range(1,h+1,1) : D[k] += D[k-1] b = not b if b : R.append(D[h]) return R A110501_list(19) # Peter Luschny, Apr 01 2012
-
Sage
[2*(-1)^n*(1-4^n)*bernoulli(2*n) for n in (1..20)] # G. C. Greubel, Nov 28 2018
Formula
A000111(2*n-1) = a(n)*2^(2*n-2)/n. - Alejandro H. Morales, Jul 26 2020
E.g.f.: x * tan(x/2) = Sum_{k > 0} a(k) * x^(2*k) / (2*k)!.
E.g.f.: x * tan(x/2) = x^2 / (2 - x^2 / (6 - x^2 / (... 4*k+2 - x^2 / (...)))). - Michael Somos, Mar 13 2014
O.g.f.: Sum_{n >= 0} n!^2 * x^(n+1) / Product_{k = 1..n} (1 + k^2*x). - Paul D. Hanna, Jul 21 2011
a(n) = Sum_{k = 0..2*n} (-1)^(n-k+1)*Stirling2(2*n, k)*A059371(k). - Vladeta Jovovic, Feb 07 2004
O.g.f.: A(x) = x/(1-x/(1-2*x/(1-4*x/(1-6*x/(1-9*x/(1-12*x/(... -[(n+1)/2]*[(n+2)/2]*x/(1- ...)))))))) (continued fraction). - Paul D. Hanna, Jan 16 2006
a(n) = Pi^(-2*n)*integral(log(t/(1-t))^(2*n)-log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 25 2011
a(n) = the upper left term of M^(n-1); M is an infinite square production matrix with M[i,j] = C(i+1,j-1), i.e., Pascal's triangle without the first two rows and right border, see the examples and Maple program. - Gary W. Adamson, Jul 19 2011
G.f.: 1/U(0) where U(k) = 1 + 2*(k^2)*x - x*((k+1)^2)*(x*(k^2)+1)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 15 2012
a(n+1) = Sum_{k=0..n} A211183(n, k)*2^(n-k). - Philippe Deléham, Feb 03 2013
G.f.: 1 + x/(G(0)-x) where G(k) = 2*x*(k+1)^2 + 1 - x*(k+2)^2*(x*k^2+2*x*k+x+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 10 2013
G.f.: G(0) where G(k) = 1 + x*(2*k+1)^2/( 1 + x + 4*x*k + 4*x*k^2 - 4*x*(k+1)^2*(1 + x + 4*x*k + 4*x*k^2)/(4*x*(k+1)^2 + (1 + 4*x + 8*x*k + 4*x*k^2)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2013
G.f.: R(0), where R(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/(1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/R(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 27 2013
E.g.f. (offset 1): sqrt(x)*tan(sqrt(x)/2) = Q(0)*x/2, where Q(k) = 1 - x/(x - 4*(2*k+1)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 06 2014
Pi^2/6 = 2*Sum_{k=1..N} (-1)^(k-1)/k^2 + (-1)^N/N^2(1 - 1/N + 1/N^3 - 3/N^5 + 17/N^7 - 155/N^9 +- ...), where the terms in the parenthesis are (-1)^n*a(n)/N^(2n-1). - M. F. Hasler, Mar 11 2015
a(n) = 2*n*|euler(2*n-1, 0)|. - Peter Luschny, Jun 09 2016
a(n) = 4^(1-n) * (4^n-1) * Pi^(-2*n) * (2*n)! * zeta(2*n). - Daniel Suteu, Oct 14 2016
a(n) ~ 8*Pi*(2^(2*n)-1)*(n/(Pi*exp(1)))^(2*n+1/2)*exp(1/2+(1/24)/n-(1/2880)/n^3+(1/40320)/n^5+...). [Given in A001469 by Peter Luschny, Jul 24 2013, copied May 14 2022.]
a(n) = A000182(n) * n / 4^(n-1) (Han and Liu, 2018). - Amiram Eldar, May 17 2024
Extensions
Edited by M. F. Hasler, Mar 22 2015
Comments