cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A216148 Primes of the form 2*k^k + 1 = A216147(k).

Original entry on oeis.org

3, 17832200896513, 78692816150593075150849
Offset: 1

Views

Author

M. F. Hasler, Sep 02 2012

Keywords

Comments

The sequence should be extended through A110932, which lists the corresponding values of k: The next term, 2*251^251 + 1 = A216147(A110932(4)) ~ 4.16*10^602, is too large to include here.

Crossrefs

Cf. A110932.
A subsequence of A133663, with b=a and c=1.

Programs

  • Mathematica
    Select[Table[2n^n+1,{n,20}],PrimeQ] (* Harvey P. Dale, Mar 27 2016 *)
  • PARI
    for(n=1,999, ispseudoprime(p=n^n*2+1) & print1(p","))

Formula

a(2) = A216147(12) = A005109(95) = A070855(12) = A058383(89) = A133663(18).
a(3) = A216147(18) = A005109(183)= A070855(18) = A058383(177)= A133663(36).

A110931 Numbers k such that 2*k^k - 1 is prime.

Original entry on oeis.org

2, 3, 357, 1400, 205731, 296598
Offset: 1

Views

Author

Ray G. Opao, Sep 25 2005

Keywords

Comments

a(5) > 4000. - Ray G. Opao, Oct 23 2014
a(5) > 101000. - Serge Batalov, Apr 13 2018

Examples

			3 is in the sequence since 2*3^3 - 1 = 53 is prime.
		

Crossrefs

Numbers k such that b*k^k - b + 1 is prime: this sequence (b=2), A301521 (b=4), A302123 (b=6).

Programs

  • Magma
    [n: n in [0..500] | IsPrime(2*n^n-1)]; // Vincenzo Librandi, Nov 01 2014
  • Mathematica
    Select[Range[1000], PrimeQ[2*#^# - 1] &] (* Vaclav Kotesovec, Oct 31 2014 *)
  • PARI
    for(n=1,2000,1;if(isprime(2*n^n-1),print(n))) \\ Ray G. Opao, Oct 23 2014
    

Extensions

a(5-6) from Ryan Propper, Jul 24-28 2022

A301520 Numbers k such that 4*k^k + 3 is prime.

Original entry on oeis.org

0, 1, 2, 5, 10, 44, 65, 1424
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

Next term, if it exists, is greater than 5000. - Vaclav Kotesovec, Mar 25 2018
Next term, if it exists, is greater than 25000. - Robert Price, Apr 22 2019

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 3] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 100, if(isprime(4*n^n+3), print1(n", ")))

Extensions

a(8) from Vaclav Kotesovec, Mar 25 2018

A160600 Numbers k such that 3*(2k)^(2k)+1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 143, 225
Offset: 1

Views

Author

M. F. Hasler, Jul 10 2009

Keywords

Comments

This corresponds to the numbers such that 3m^m+1 is prime, but these must all be even, m=2k, and therefore it is more natural to record the sequence of k=m/2.
Next term > 15000. - Matevz Markovic, Oct 09 2012

Examples

			a(1) = 1, because 2^2*3+1 = 13 is the smallest prime of this form.
a(2) = 2, because 4^4*3+1 = 769 is the next smallest prime of this form. a(3) = 3, because 6^6*3+1 = 139969 is again a prime.
		

Crossrefs

Cf. A160360 (3n^n+2 is prime), A121270 = primes among Sierpinski numbers A014566(n)=n^n+1; A216148 = A216147(A110932): primes 2n^n+1; A088790, A065798.

Programs

  • Maple
    q:= k-> isprime(3*(2*k)^(2*k)+1):
    select(q, [$1..225])[];  # Alois P. Heinz, Aug 04 2025
  • PARI
    for(i=1,9999,ispseudoprime(i^i*3+1)&print1(i/2,","))

A216147 2*n^n + 1.

Original entry on oeis.org

3, 3, 9, 55, 513, 6251, 93313, 1647087, 33554433, 774840979, 20000000001, 570623341223, 17832200896513, 605750213184507, 22224013651116033, 875787780761718751, 36893488147419103233, 1654480523772673528355, 78692816150593075150849, 3956839311320627178247959
Offset: 0

Views

Author

M. F. Hasler, Sep 02 2012

Keywords

Crossrefs

See A216148 for primes in this sequence, A110932 for the corresponding indices.

A070855 Smallest prime of the form k*n^n + 1.

Original entry on oeis.org

2, 5, 109, 257, 37501, 139969, 3294173, 167772161, 3874204891, 30000000001, 24536803672547, 17832200896513, 12115004263690121, 344472211592298497, 12261028930664062501, 221360928884514619393, 6617922095090694113417
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Comments

By Linnik's theorem, a(n) = O(n^(Ln)) for some effectively computable L.
For more terms, see A175763.

Crossrefs

Programs

  • Mathematica
    sp[n_]:=Module[{n2=n^n,k=1},While[!PrimeQ[k*n2+1],k++];k*n2+1]; Array[ sp,20] (* Harvey P. Dale, Jul 06 2014 *)

Extensions

More terms from Don Reble, May 16 2002
Comments and b-file from Charles R Greathouse IV, Aug 30 2010

A301519 Numbers k such that 4*k^k + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 25, 7143, 11583
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

a(9) > 20000, if it exists. All terms correspond to certified primes. - Giovanni Resta, Apr 06 2018

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 100, if(isprime(4*n^n+1), print1(n", ")))

Extensions

a(7)-a(8) from Giovanni Resta, Apr 06 2018

A301522 Numbers k such that 16*k^k + 1 is prime.

Original entry on oeis.org

0, 1, 3, 6, 12, 60, 85, 87, 612, 9073
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[16*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 1000, if(isprime(16*n^n+1), print1(n", ")))

Extensions

a(10) from Michael S. Branicky, Apr 16 2023

A302090 Numbers k such that 6*k^k + 5 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 134, 533, 2911, 4351
Offset: 1

Views

Author

Seiichi Manyama, Apr 01 2018

Keywords

Comments

a(11) > 50000. - Robert Price, Feb 16 2020

Crossrefs

Numbers k such that b*k^k + b - 1 is prime: A110932 (b=2), A160360 (b=3), A301520 (b=4), A302088 (b=5), this sequence (b=6).
Cf. A302091.

Programs

  • PARI
    for(n=0, 500, if(isprime(6*n^n+5), print1(n", ")))

Extensions

a(8) from Jon E. Schoenfield, Apr 01 2018
a(9)-a(10) from Vaclav Kotesovec, Apr 01 2018

A302088 Numbers k such that 5*k^k + 4 is prime.

Original entry on oeis.org

3, 5, 9, 183, 561
Offset: 1

Views

Author

Seiichi Manyama, Apr 01 2018

Keywords

Comments

a(6), if it exists, is greater than 5000. - Vaclav Kotesovec, Apr 01 2018
a(6), if it exists, is greater than 20000. - Michael S. Branicky, Sep 02 2024

Crossrefs

Numbers k such that b*k^k + b - 1 is prime: A110932 (b=2), A160360 (b=3), A301520 (b=4), this sequence (b=5), A302090 (b=6).
Cf. A302089.

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[5*#^# + 4] &] (* Vaclav Kotesovec, Apr 01 2018 *)
  • PARI
    for(n=0, 500, if(isprime(5*n^n+4), print1(n", ")))
    
  • PARI
    lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(5*n^n+4), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018

Extensions

a(5) from Vaclav Kotesovec, Apr 01 2018
Showing 1-10 of 11 results. Next