A216148
Primes of the form 2*k^k + 1 = A216147(k).
Original entry on oeis.org
3, 17832200896513, 78692816150593075150849
Offset: 1
A subsequence of
A133663, with b=a and c=1.
-
Select[Table[2n^n+1,{n,20}],PrimeQ] (* Harvey P. Dale, Mar 27 2016 *)
-
for(n=1,999, ispseudoprime(p=n^n*2+1) & print1(p","))
A110931
Numbers k such that 2*k^k - 1 is prime.
Original entry on oeis.org
2, 3, 357, 1400, 205731, 296598
Offset: 1
3 is in the sequence since 2*3^3 - 1 = 53 is prime.
Numbers k such that b*k^k - b + 1 is prime: this sequence (b=2),
A301521 (b=4),
A302123 (b=6).
-
[n: n in [0..500] | IsPrime(2*n^n-1)]; // Vincenzo Librandi, Nov 01 2014
-
Select[Range[1000], PrimeQ[2*#^# - 1] &] (* Vaclav Kotesovec, Oct 31 2014 *)
-
for(n=1,2000,1;if(isprime(2*n^n-1),print(n))) \\ Ray G. Opao, Oct 23 2014
A301520
Numbers k such that 4*k^k + 3 is prime.
Original entry on oeis.org
0, 1, 2, 5, 10, 44, 65, 1424
Offset: 1
-
Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 3] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 100, if(isprime(4*n^n+3), print1(n", ")))
A160600
Numbers k such that 3*(2k)^(2k)+1 is prime.
Original entry on oeis.org
1, 2, 3, 5, 143, 225
Offset: 1
a(1) = 1, because 2^2*3+1 = 13 is the smallest prime of this form.
a(2) = 2, because 4^4*3+1 = 769 is the next smallest prime of this form. a(3) = 3, because 6^6*3+1 = 139969 is again a prime.
-
q:= k-> isprime(3*(2*k)^(2*k)+1):
select(q, [$1..225])[]; # Alois P. Heinz, Aug 04 2025
-
for(i=1,9999,ispseudoprime(i^i*3+1)&print1(i/2,","))
Original entry on oeis.org
3, 3, 9, 55, 513, 6251, 93313, 1647087, 33554433, 774840979, 20000000001, 570623341223, 17832200896513, 605750213184507, 22224013651116033, 875787780761718751, 36893488147419103233, 1654480523772673528355, 78692816150593075150849, 3956839311320627178247959
Offset: 0
See
A216148 for primes in this sequence,
A110932 for the corresponding indices.
A070855
Smallest prime of the form k*n^n + 1.
Original entry on oeis.org
2, 5, 109, 257, 37501, 139969, 3294173, 167772161, 3874204891, 30000000001, 24536803672547, 17832200896513, 12115004263690121, 344472211592298497, 12261028930664062501, 221360928884514619393, 6617922095090694113417
Offset: 1
-
sp[n_]:=Module[{n2=n^n,k=1},While[!PrimeQ[k*n2+1],k++];k*n2+1]; Array[ sp,20] (* Harvey P. Dale, Jul 06 2014 *)
A301519
Numbers k such that 4*k^k + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 7, 25, 7143, 11583
Offset: 1
-
Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 100, if(isprime(4*n^n+1), print1(n", ")))
A301522
Numbers k such that 16*k^k + 1 is prime.
Original entry on oeis.org
0, 1, 3, 6, 12, 60, 85, 87, 612, 9073
Offset: 1
-
Flatten[{0, Select[Range[1000], PrimeQ[16*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 1000, if(isprime(16*n^n+1), print1(n", ")))
A302090
Numbers k such that 6*k^k + 5 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 134, 533, 2911, 4351
Offset: 1
-
for(n=0, 500, if(isprime(6*n^n+5), print1(n", ")))
A302088
Numbers k such that 5*k^k + 4 is prime.
Original entry on oeis.org
3, 5, 9, 183, 561
Offset: 1
-
Select[Range[1, 1000], PrimeQ[5*#^# + 4] &] (* Vaclav Kotesovec, Apr 01 2018 *)
-
for(n=0, 500, if(isprime(5*n^n+4), print1(n", ")))
-
lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(5*n^n+4), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018
Showing 1-10 of 11 results.
Comments