cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111566 a(n) = ((1+sqrt(8))*(2+sqrt(2))^n + (1-sqrt(8))*(2-sqrt(2))^n)/2.

Original entry on oeis.org

1, 6, 22, 76, 260, 888, 3032, 10352, 35344, 120672, 412000, 1406656, 4802624, 16397184, 55983488, 191139584, 652591360, 2228086272, 7607162368, 25972476928, 88675582976, 302757378048, 1033678346240, 3529198628864, 12049437822976, 41139354034176, 140458540490752
Offset: 0

Views

Author

Creighton Dement, Aug 06 2005

Keywords

Comments

Binomial transform of A048655: generalized Pellian with second term equal to 5.
Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[K*J] with K = + .5'i + .5'j + .5k' + .5'kk' and J = + .5i' + .5j' + 2'kk' + .5'ki' + .5'kj'.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(2+r)^n+(1-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 27 2009
    
  • Mathematica
    LinearRecurrence[{4,-2},{1,6},30] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018

Formula

a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 6.
Program "FAMP" returns: a(n) = A007052(n) - A006012(n) + A111567(n).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: (1+2*x)/(1-4*x+2*x^2).
a(n) = A007070(n) + 2*A007070(n-1). (End)
a(n) = Sum_{k=0..n} A207543(n,k)*2^k. - Philippe Deléham, Feb 25 2012
a(n) = 4*A007070(n) - A007052(n+1). - Yuriy Sibirmovsky, Sep 13 2016
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, May 26 2024

Extensions

Edited by N. J. A. Sloane, Jul 27 2009 using new definition from Al Hakanson (hawkuu(AT)gmail.com)