A111566 a(n) = ((1+sqrt(8))*(2+sqrt(2))^n + (1-sqrt(8))*(2-sqrt(2))^n)/2.
1, 6, 22, 76, 260, 888, 3032, 10352, 35344, 120672, 412000, 1406656, 4802624, 16397184, 55983488, 191139584, 652591360, 2228086272, 7607162368, 25972476928, 88675582976, 302757378048, 1033678346240, 3529198628864, 12049437822976, 41139354034176, 140458540490752
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+2*r)*(2+r)^n+(1-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 27 2009 -
Mathematica
LinearRecurrence[{4,-2},{1,6},30] (* Harvey P. Dale, Jan 31 2015 *)
-
PARI
x='x+O('x^30); Vec((1+2*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018
Formula
a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 6.
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: (1+2*x)/(1-4*x+2*x^2).
a(n) = Sum_{k=0..n} A207543(n,k)*2^k. - Philippe Deléham, Feb 25 2012
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, May 26 2024
Extensions
Edited by N. J. A. Sloane, Jul 27 2009 using new definition from Al Hakanson (hawkuu(AT)gmail.com)
Comments