cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078343 a(0) = -1, a(1) = 2; a(n) = 2*a(n-1) + a(n-2).

Original entry on oeis.org

-1, 2, 3, 8, 19, 46, 111, 268, 647, 1562, 3771, 9104, 21979, 53062, 128103, 309268, 746639, 1802546, 4351731, 10506008, 25363747, 61233502, 147830751, 356895004, 861620759, 2080136522, 5021893803, 12123924128, 29269742059, 70663408246, 170596558551, 411856525348
Offset: 0

Views

Author

Benoit Cloitre, Nov 22 2002

Keywords

Comments

Inverse binomial transform of -1, 1, 6, 22, 76, 260, ... (see A111566). Binomial transform of -1, 3, -2, 6, -4, 12, -8, 24, -16, ... (see A162255). - R. J. Mathar, Oct 02 2012

Examples

			G.f. = -1 + 2*x + 3*x^2 + 8*x^3 + 19*x^4 + 46*x^5 + 111*x^6 + ... - _Michael Somos_, Jun 30 2022
		

References

  • H. S. M. Coxeter, 1998, Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk, 16, pp. 1-9.

Crossrefs

Programs

  • Haskell
    a078343 n = a078343_list !! n
    a078343_list = -1 : 2 : zipWith (+)
                            (map (* 2) $ tail a078343_list) a078343_list
    -- Reinhard Zumkeller, Jan 04 2013
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)/(-1+2*x+x^2))); // G. C. Greubel, Jul 26 2018
  • Maple
    f:=proc(n) option remember; if n=0 then RETURN(-1); fi; if n=1 then RETURN(2); fi; 2*f(n-1)+f(n-2); end;
  • Mathematica
    Table[4 Fibonacci[n, 2] - Fibonacci[n + 1, 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
    LinearRecurrence[{2,1},{-1,2},40] (* Harvey P. Dale, Apr 15 2019 *)
  • PARI
    a(n)=([0,1;1,2]^n*[-1;2])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    

Formula

For the unsigned version: a(1)=1; a(2)=2; a(n) = Sum_{k=2..n-1} (a(k) + a(k-1)).
a(n) is asymptotic to (1/4)*(-2+3*sqrt(2))*(1+sqrt(2))^n.
a(n) = A048746(n-3) + 2, for n > 2. - Ralf Stephan, Oct 17 2003
a(n) = 2*A000129(n) - A000129(n-1) if n > 0; abs(a(n)) = Sum_{k=0..floor(n/2)} (C(n-k-1, k) - C(n-k-1, k-1))2^(n-2k). - Paul Barry, Dec 23 2004
O.g.f.: (1-4*x)/(-1 + 2*x + x^2). - R. J. Mathar, Feb 15 2008
a(n) = 4*Pell(n) - Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016
a(n) = -(-1)^n * A048654(-n) = ( (-2+3*sqrt(2))*(1+sqrt(2))^n + (-2-3*sqrt(2))*(1-sqrt(2))^n )/4 for all n in Z. - Michael Somos, Jun 30 2022
2*a(n+1)^2 = A048655(n)^2 + (-1)^n*7. - Philippe Deléham, Mar 07 2023
E.g.f.: 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2) - exp(x)*cosh(sqrt(2)*x). - Stefano Spezia, May 26 2024

Extensions

Entry revised by N. J. A. Sloane, Apr 29 2004

A111567 Binomial transform of A048654: generalized Pellian with second term equal to 4.

Original entry on oeis.org

1, 5, 18, 62, 212, 724, 2472, 8440, 28816, 98384, 335904, 1146848, 3915584, 13368640, 45643392, 155836288, 532058368, 1816560896, 6202126848, 21175385600, 72297288704, 246838383616, 842758957056, 2877359060992
Offset: 0

Views

Author

Creighton Dement, Aug 06 2005

Keywords

Comments

Dropping the leading 1, this becomes the 4th row of the 2-shuffle Phi_2(W(sqrt(2))) of the Fraenkel-Kimberling publication. - R. J. Mathar, Aug 17 2009
Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[K*J] with K = + .5'i + .5'j + .5k' + .5'kk' and J = + .5i' + .5j' + 2'kk' + .5'ki' + .5'kj'.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-2},{1,5},30] (* Harvey P. Dale, Jul 01 2016 *)
  • Maxima
    a[0]:1$
    a[1]:5$
    a[n]:=4*a[n-1]-2*a[n-2]$
    A111567(n):=a[n]$
    makelist(A111567(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 5. Program "FAMP" returns: A111566(n) = A007052(n) - A006012(n) + a(n).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: (1+x)/(1-4*x+2*x^2).
a(n) = A007070(n) + A007070(n-1). (End)
a(n) = ((2+sqrt(18))*(2+sqrt(2))^n + (2-sqrt(18))*(2-sqrt(2))^n)/4, offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
a(n) = ((5+sqrt(32))(2+sqrt(2))^n+(5-sqrt(32))(2-sqrt(2))^n)/2 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Extensions

Typo in definition corrected by Klaus Brockhaus, Aug 09 2009

A207543 Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2012

Keywords

Comments

Previous name was: "A scaled version of triangle A082985."
Triangle, read by rows, given by (0, 1/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
		

Crossrefs

Cf. A082985 which is another version of this triangle.
Cf. Diagonals : A005408, A000330, A005585, A050486, A054333, A057788. Cf. A119900.

Programs

  • Maple
    s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
    seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016

Formula

T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 3.
G.f.: (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Sum_{i, i>=0} T(n+i,n) = A000204(2*n+1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A078069(n), A000007(n), A003945(n), A111566(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A090131(n), A005408(n), A003945(n), A078057(n), A028859(n), A000244(n), A063782(n), A180168(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively.
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k,n) = 1/2*(2*n + 1)*(n*(n + 1))^p.
For example, for row 6 we find S(6,n) + 27*S(8,n) + 55*S(10,n) + 13*S(12,n) = 1/2*(2*n + 1)*(n*(n + 1))^6.
There appears to be a similar result for the odd power sums S(2*k + 1,n) involving A119900. (End)

Extensions

New name using a formula of the author from Peter Luschny, Aug 17 2016

A163348 a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 35, 161, 721, 3199, 14147, 62489, 275905, 1218007, 5376707, 23734193, 104768209, 462469903, 2041441955, 9011362409, 39778080769, 175588947751, 775087121123, 3421400092481, 15102790707025, 66666943594783
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A111566. Third binomial transform of A143095. Inverse binomial transform of A081180 without initial 0.

Crossrefs

Cf. A111566, A143095 (1,4,2,8,4,16,...), A081180.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(3+r)^n+(1-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{6, -7}, {1, 7}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1+x)/(1-6*x+7*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((1+2*sqrt(2))*(3+sqrt(2))^n + (1-2*sqrt(2))*(3-sqrt(2))^n)/2.
G.f.: (1+x)/(1-6*x+7*x^2).
E.g.f.: exp(3*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016
a(n) = A081179(n)+A081179(n+1). - R. J. Mathar, Feb 04 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
Showing 1-4 of 4 results.