cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010121 Continued fraction for sqrt(7).

Original entry on oeis.org

2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4
Offset: 0

Views

Author

Keywords

Comments

This is a basic member of a family of 4-periodic multiplicative sequences with two parameters (c1,c2), defined for n >= 1 by a(n)=1 if n is odd, a(n)=c1 if n == 0 (mod 4) and a(n)=c2 if n == 2 (mod 4). Here, (c1,c2)=(4,1).
The Dirichlet generating function is (1+(c2-1)/2^s+(c1-c2)/4^s)*zeta(s).
Other members are A010123 with parameters (6,2), A010127 (8,3), A010130 (10,1), A010131 (10,2), A010132 (10,4), A010137 (12,5), A010146 (14,6), A089146 (4,8), A109008 (4,2), A112132 (7,3). If c1=c2, this reduces to the cases discussed in A040001. - R. J. Mathar, Feb 18 2011

Examples

			2.645751311064590590501615753...  = A010465 = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...)))).
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010465 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[7],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    CoefficientList[Series[(2 x^2 + 3 x + 2) (x^2 - x + 1) / ((1 - x) (1 + x) (x^2 + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 26 2016 *)
    PadRight[{2},120,{4,1,1,1}] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(7)); for (n=0, 20000, write("b010121.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

From R. J. Mathar, Jun 17 2009: (Start)
G.f.: -(2*x^2+3*x+2)*(x^2-x+1)/((x-1)*(1+x)*(x^2+1)).
a(n) = a(n-4), n > 4. (End)
a(n) = (7 + 3*(-1)^n + 3*(-i)^n + 3*i^n)/4, n > 0, where i is the imaginary unit. - Bruno Berselli, Feb 18 2011

A112086 a(n) = the period of the first differences of the n-th row of A112060 (or A112070), or 0 if that row does not have a periodic first difference.

Original entry on oeis.org

2, 4, 6, 16, 72, 420, 3240
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2005

Keywords

Comments

These values have been computed empirically. An independent recomputation or a mathematical proof would be welcome. The initial terms factored: 2, 2*2, 2*3, 2*2*2*3*3, 2*2*7*3*5, 2*2*2*3*3*3*3*5, ...

Crossrefs

These are the periods of A010684, A112132, A112133, A112134, A112135, A112136, A112137, etc. (Periods of A112138 & A112139 not computed yet.) If we sum the period length prefixes of these sequences, as Sum_{i=1..a(1)} A010684(i), Sum_{i=1..a(2)} A112132(i), Sum_{i=1..a(3)} A112133(i), etc., we get the sequence 4, 12, 60, 420, 4620, 60060, 1021020, ... (cf. A097250) and when doubled, it yields: 8, 24, 120, 840, 9240, 120120, 2042040, ... (cf. A066631 and A102476).
Showing 1-2 of 2 results.