A261191 40-gonal numbers: a(n) = 38*n*(n-1)/2 + n.
0, 1, 40, 117, 232, 385, 576, 805, 1072, 1377, 1720, 2101, 2520, 2977, 3472, 4005, 4576, 5185, 5832, 6517, 7240, 8001, 8800, 9637, 10512, 11425, 12376, 13365, 14392, 15457, 16560, 17701, 18880, 20097, 21352, 22645, 23976, 25345, 26752, 28197, 29680, 31201
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
JavaScript
function a(n){return 38*n*(n-1)/2+n}
-
Magma
[n*(19*n-18): n in [0..45]]; // Vincenzo Librandi, Aug 12 2015
-
Maple
A261191:=n->38*n*(n-1)/2+n: seq(A261191(n), n=0..50); # Wesley Ivan Hurt, Aug 15 2015
-
Mathematica
Table[n (19 n - 18), {n, 0, 45}] (* Bruno Berselli, Aug 21 2015 *)
-
PARI
concat(0, Vec(-x*(37*x+1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Aug 11 2015
-
PARI
first(m)=my(v=vector(m,i,i--;38*i*(i-1)/2+i));v; \\ Anders Hellström, Aug 13 2015
Formula
a(n) = n*(19*n - 18).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. - Colin Barker, Aug 11 2015
G.f.: -x*(37*x+1) / (x-1)^3. - Colin Barker, Aug 11 2015
E.g.f.: exp(x)*(x + 19*x^2). - Nikolaos Pantelidis, Feb 10 2023
Comments