cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261191 40-gonal numbers: a(n) = 38*n*(n-1)/2 + n.

Original entry on oeis.org

0, 1, 40, 117, 232, 385, 576, 805, 1072, 1377, 1720, 2101, 2520, 2977, 3472, 4005, 4576, 5185, 5832, 6517, 7240, 8001, 8800, 9637, 10512, 11425, 12376, 13365, 14392, 15457, 16560, 17701, 18880, 20097, 21352, 22645, 23976, 25345, 26752, 28197, 29680, 31201
Offset: 0

Views

Author

Sergey Pavlov, Aug 11 2015

Keywords

Comments

According to the common formula for the polygonal numbers: (s-2)*n*(n-1)/2 + n (here s = 40).
The 4th number of the sequence, 117, is also the 10th pentagonal number (see A000326). The next number of the series, 232, is also the 9th decagonal number (see A001107), while 576 is the 25th square number (see A000290). The 12th number of the sequence, 2101, is the 23rd 11-gonal number (see A051682).
From Bruno Berselli, Aug 21 2015: (Start)
a(n) and a(n) - 2*n + 1 provide the numbers m such that 19*m + 81 is a square.
Partial sums of the numbers of the type 38*h + 1 (quadrisections of A113541 and A151979). (End)

Programs

  • JavaScript
    function a(n){return 38*n*(n-1)/2+n}
    
  • Magma
    [n*(19*n-18): n in [0..45]]; // Vincenzo Librandi, Aug 12 2015
  • Maple
    A261191:=n->38*n*(n-1)/2+n: seq(A261191(n), n=0..50); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    Table[n (19 n - 18), {n, 0, 45}] (* Bruno Berselli, Aug 21 2015 *)
  • PARI
    concat(0, Vec(-x*(37*x+1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Aug 11 2015
    
  • PARI
    first(m)=my(v=vector(m,i,i--;38*i*(i-1)/2+i));v; \\ Anders Hellström, Aug 13 2015
    

Formula

a(n) = n*(19*n - 18).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. - Colin Barker, Aug 11 2015
G.f.: -x*(37*x+1) / (x-1)^3. - Colin Barker, Aug 11 2015
E.g.f.: exp(x)*(x + 19*x^2). - Nikolaos Pantelidis, Feb 10 2023

A115272 Primes p such that p + 2, 18*p^2 + 1, and 18*(p+2)^2 + 1 are all primes.

Original entry on oeis.org

29, 107, 431, 1487, 1607, 2141, 5501, 10139, 10271, 17579, 22481, 23057, 27479, 32369, 36341, 36929, 38447, 55931, 57527, 69827, 75539, 78539, 79691, 81047, 81971, 84179, 86027, 89561, 93761, 102059, 112571, 113147, 118799, 119687
Offset: 1

Views

Author

Zak Seidov, Jan 19 2006

Keywords

Examples

			a(1)=29 because 31, 18*29^2 + 1 = 15139, and 18*31^2 + 1 = 17299 are all primes.
		

Crossrefs

Cf. A089001 (Numbers n such that 2*n^2 + 1 is prime),
A090612 (Numbers k such that the k-th prime is of the form 2*k^2+1),
A090698 (Primes of the form 2*n^2+1),
A113541 (Numbers n such that 18*n^2+1 is a multiple of 19).

Programs

  • Magma
    [p: p in PrimesUpTo(200000)| IsPrime(p+2) and IsPrime(18*p^2+1) and IsPrime(18*(p+2)^2+1)] // Vincenzo Librandi, Nov 13 2010

Extensions

More terms from Vincenzo Librandi, Mar 27 2010
Showing 1-2 of 2 results.