cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A014613 Numbers that are products of 4 primes.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 210, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 330, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A033987, A114106 (number of 4-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), this sequence (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[200], Plus @@ Last /@ FactorInteger[ # ] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[400], PrimeOmega[#] == 4&] (* Jean-François Alcover, Jan 17 2014 *)
  • PARI
    isA014613(n) = bigomega(n)==4 \\ Michael B. Porter, Dec 13 2009
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 4
    print([k for k in range(377) if ok(k)]) # Michael S. Branicky, Nov 19 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014613(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024

Formula

Product p_i^e_i with Sum e_i = 4.
a(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, May 04 2013
a(n) = A078840(4,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998

A116430 The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 34, 247, 1712, 11185, 68963, 409849, 2367507, 13377156, 74342563, 407818620, 2214357712, 11926066887, 63809981451, 339576381990, 1799025041767, 9494920297227, 49950199374227, 262036734664892
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006, Jun 01 2006

Keywords

Comments

If instead we asked for those less than or equal to 2^n, then the sequence is A000012.

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 10^n], {n, 0, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(10^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A116430(n):
        if n<=1: return 3*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,n))) # Chai Wah Wu, Aug 23 2024

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar
a(15)-a(16) from Donovan Johnson, Oct 01 2010
a(17)-a(19) from Daniel Suteu, Jul 10 2023

A120049 Number of 8-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 7, 105, 1418, 17572, 207207, 2367507, 26483012, 291646797, 3173159326, 34192782745, 365561221293, 3882841742380, 41015564702074, 431227959019552, 4515480975731045, 47115876816676830
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 7 eight-almost primes up to 1000: 256, 384, 576, 640, 864, 896 & 960.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[8, 10^n], {n, 12}]
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A120049(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,8))) # Chai Wah Wu, Aug 23 2024

Extensions

a(13)-a(14) from Robert G. Wilson v, Jan 07 2007
Example corrected by Harvey P. Dale, Aug 13 2018
a(15)-a(18) from Henri Lifchitz, Mar 18 2025

A120047 Number of 6-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 2, 37, 485, 5933, 68963, 774078, 8493366, 91683887, 977694273, 10327249593, 108264085934, 1128049914377, 11694704489580, 120734708167792, 1242063105505230, 12739510126065301, 130330025583399801
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 2 six-almost primes up to 100: 64 and 96, so a(2) = 2.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[6, 10^n], {n, 0, 13}]
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def almostprimepi(n,k):
        if k==0: return int(n>=1)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
    def A120047(n): return almostprimepi(10**n,6) # Chai Wah Wu, Dec 09 2024

Extensions

a(14) from Robert G. Wilson v, Jan 07 2007
a(15)-a(18) from Henri Lifchitz, Feb 03 2025

A120035 Number of 4-almost primes f such that 2^n < f <= 2^(n+1).

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 7, 20, 37, 81, 173, 344, 736, 1461, 3065, 6208, 12643, 25662, 52014, 105487, 212566, 430007, 865650, 1744136, 3508335, 7053390, 14167804, 28441899, 57065447, 114418462, 229341261, 459442819, 920097130, 1841946718, 3686197728
Offset: 0

Views

Author

Keywords

Comments

The partial sum equals the number of Pi_4(2^n) = A334069(n).

Examples

			(2^4, 2^5] there is one semiprime, namely 24. 16 was counted in the previous entry.
		

Crossrefs

Programs

  • Mathematica
    FourAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; t = Table[ FourAlmostPrimePi[2^n], {n, 0, 37}]; Rest@t - Most@t
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A120035(n):
        x = 1<Chai Wah Wu, Mar 28 2025

A120048 Number of 7-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 14, 231, 2973, 35585, 409849, 4600247, 50678212, 550454756, 5913771637, 62981797962, 665997804082, 7001087934965, 73232029374751, 762783057783010, 7916319351632036, 81898808371556517
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 14 seven-almost primes up to 1000: 128, 192, 288, 320, 432, 448, 480, 648, 672, 704, 720, 800, 832 & 972.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[7, 10^n], {n, 11}]

Extensions

More terms from Robert G. Wilson v, Jan 07 2007
Example corrected by Harvey P. Dale, Jan 25 2013
a(15)-a(18) from Henri Lifchitz, Mar 18 2025

A120050 Number of 9-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 2, 47, 671, 8491, 101787, 1180751, 13377156, 148930536, 1636170477, 17787688377, 191742524399, 2052389350029, 21838745177567, 231206458686127, 2437121982958248, 25591920108631224, 267840642082525459
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 2 nine-almost primes up to 1000: 512 & 768.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[9, 10^n], {n, 12}]

Extensions

a(13) and a(14) from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 18 2025

A120051 Number of 10-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 22, 306, 4016, 49163, 578154, 6618221, 74342563, 823164388, 9011965866, 97765974368, 1052666075366, 11263041623194, 119864659464824, 1269754732725522, 13396817167474205, 140847445420555406
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 22 ten-almost primes up to 10000: 1024, 1536, 2304, 2560, 3456, 3584, 3840, 5184, 5376, 5632, 5760, 6400, 6656, 7776, 8064, 8448, 8640, 8704, 8960, 9600, 9728, and 9984.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[10, 10^n], {n, 12}]
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A120051(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,10))) # Chai Wah Wu, Nov 03 2024

Extensions

More terms from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 20 2025

A120053 Number of 12-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 3, 63, 865, 11068, 133862, 1563465, 17836903, 200051717, 2214357712, 24255601105, 263439785143, 2841076717752, 30457549169277, 324855769153426, 3449587218984911, 36489283363168885
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 3 twelve-almost primes up to 10000: 4096, 6144, and 9216.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[12, 10^n], {n, 11}]
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A120053(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,12))) # Chai Wah Wu, Aug 23 2024

Extensions

a(13) and a(14) from Robert G. Wilson v, Jan 07 2007
a(15) from Chai Wah Wu, Aug 24 2024
a(16)-a(19) from Henri Lifchitz, Mar 18 2025

A120052 Number of 11-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 7, 138, 1878, 23448, 279286, 3230577, 36585097, 407818620, 4490844534, 48972151631, 529781669333, 5693047157230, 60832290450373, 646862625625663, 6849459596884350, 72259172519243461
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 7 eleven-almost primes up to 10000: 2048, 3072, 4608, 5120, 6912, 7168, and 7680.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[11, 10^n], {n, 12}]

Extensions

a(14) from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 18 2025
Showing 1-10 of 15 results. Next