cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A164382 Take sequence A114129, those integers that are factored into prime powers each with a distinct prime exponent. If the largest power of p dividing A114129(n) is p^q(p), p and q being primes, then a(n) = product{p|A114129(n)} q(p)^p.

Original entry on oeis.org

4, 9, 8, 32, 27, 25, 128, 72, 108, 2048, 243, 49, 8192, 288, 125, 200, 131072, 2187, 524288, 1152, 972, 8388608, 864, 800, 536870912, 675, 2147483648, 18432, 500, 1944, 392, 3456, 177147, 73728, 137438953472, 8748, 3200, 2199023255552
Offset: 1

Views

Author

Leroy Quet, Aug 14 2009

Keywords

Comments

This is a permutation of the terms of A114129.

Examples

			288 is factored as 2^5 * 3^2. (Since the exponents 5 and 2 are distinct primes, then 288 is in sequence A114129.) The term of this sequence that corresponds to A114129(16) = 288 is then: a(16) = 5^2 * 2^3 = 200. Notably, 200 occurs in sequence A114129, as do all other terms of this sequence.
		

Crossrefs

Cf. A114129.

Extensions

Extended by Ray Chandler, Mar 15 2010

A087315 a(n) = Product_{k=1..n} prime(k)^prime(n-k+1).

Original entry on oeis.org

1, 4, 72, 21600, 190512000, 580909190400000, 428616352408083840000000, 859278392084450410309036800000000000, 2097197194438629126172451944256706311040000000000000
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2003

Keywords

Examples

			a(3) = 2^5*3^3*5^2 = 21600.
		

Crossrefs

Programs

  • Magma
    [1] cat [(&*[NthPrime(k)^(NthPrime(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    seq(product(ithprime(k)^ithprime(n-k+1), k=1..n), n=0..10);
  • Mathematica
    Table[Product[Prime[k]^Prime[n - k + 1], {k, 1, n}], {n, 0, 10}] (* G. C. Greubel, Oct 14 2018 *)
  • PARI
    for(n=0, 10, print1(prod(k=1,n, prime(k)^prime(n-k+1)), ", ")) \\ G. C. Greubel, Oct 14 2018
    
  • Sage
    [prod(nth_prime(i)^nth_prime(k-i+1) for i in (1..k)) for k in (0..10)] # Giuseppe Coppoletta, Nov 03 2014
    

Extensions

More terms from Jorge Coveiro, Dec 22 2004
Corrected by David Wasserman, May 02 2005

A272858 Numbers m such that Product(1 + p_i) = Product(1 + e_i), where m = Product((p_i)^e_i).

Original entry on oeis.org

1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 28800, 30375, 34560, 36000, 38880, 48600, 54675, 84375, 92160, 96000, 121500, 134456, 153600, 169344, 217728, 218700, 225000, 247808, 262440, 296352, 300000, 337500, 340736, 387072, 395136, 489888, 666792, 703125, 750141, 781250, 823543, 857304, 885735
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

A048102 is clearly a subsequence, as for any prime p, p^p satisfy the herein condition. Similarly, A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e., any permutation of its prime signature) gives also a term.
The condition defining this sequence coincides with the condition in A272859 at least for the terms of A114129.

Examples

			92160 is included because 92160 = 2^11 * 3^2 * 5 and (2+1)*(3+1)*(5+1) = (11+1)*(2+1)*(1+1).
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Block[{p,e}, {p,e} = Transpose@ FactorInteger@ n; Times @@ (1+p) == Times @@ (1+e)]; Select[Range[10^6], ok] (* Giovanni Resta, May 08 2016 *)
  • PARI
    is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]+1)==prod(i=1,#f~,f[i,2]) \\ Charles R Greathouse IV, Sep 08 2016
  • Sage
    def d(n):
        v = factor(n)
        d1 = prod(1 + w[0] for w in v)
        d2 = prod(1 + w[1] for w in v)
        return d1 == d2
    [k for k in (1..10000) if d(k)]
    

Formula

If N is a positive integer and N = Product_{i=1..k} (p_i)^e_i is its prime factorization, then N is in A272858 iff Product_{i=1..k} (1 + p_i) = Product_{i=1..k} (1 + e_i).
For a number with three different prime factors N = p1^e1 * p2^e2 * p3^e3, the defining condition can be expressed as: p1 + p2 + p3 + p1*p2 + p1*p3 + p2*p3 + p1*p2*p3 = e1 + e2 + e3 + e1*e2 + e1*e3 + e2*e3 + e1*e2*e3.

A272859 Numbers m such that sigma(Product(p_j)) = sigma(Product(e_j)), where m = Product((p_i)^e_i) and sigma = A000203.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 800, 1458, 3125, 5120, 6144, 6272, 10976, 12500, 21600, 30375, 36000, 48600, 54675, 77760, 84375, 114688, 116640, 121500, 134456, 138240, 169344, 173056, 225000, 229376, 247808, 337500, 354294, 384000, 395136, 600000, 653184, 655360, 703125, 750141, 823543, 857304, 913952, 979776
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

A048102 is clearly a subsequence, as for any prime p, p^p satisfy the herein condition. Moreover, due to the multiplicativity of the arithmetic function sigma, A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e., any permutation of its prime signature) gives also a term.
The condition defining this sequence coincides with the condition in A272858 at least for the terms of A114129.

Examples

			173056 is included because 173056 = 2^10 * 13^2 and sigma(2*13) = sigma(10*2).
653184 is included because 653184 = 2^7 * 3^6 * 7 and sigma(2*3*7) = sigma(7*6*1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], First@ # == Last@ # &@ Map[DivisorSigma[1, Times @@ #] &, Transpose@ FactorInteger@ #] &] (* Michael De Vlieger, May 12 2016 *)
  • Sage
    A272859 = []
    for n in (1..10000):
        v = factor(n)
        if prod(1 + w[0] for w in v) == sigma(prod(w[1] for w in v)): A272859.append(n)
    print(A272859)

A114128 Numbers that factorize into a prime number of distinct prime factors each raised to a different prime exponent.

Original entry on oeis.org

72, 108, 200, 288, 392, 500, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1944, 2312, 2888, 3087, 3200, 3267, 3456, 3872, 4000, 4232, 4563, 5324, 5408, 6075, 6125, 6272, 6728, 7688, 7803, 8575, 8748, 8788, 9248, 9747, 10952, 10976
Offset: 1

Views

Author

Jon Wild, Feb 14 2006

Keywords

Crossrefs

Subsequence of A114129.

Programs

  • Mathematica
    pnpfQ[n_]:=Module[{pn=PrimeNu[n],fi=Transpose[FactorInteger[n]][[2]]}, PrimeQ[ pn]&&Length[Union[fi]]==pn&&AllTrue[fi,PrimeQ]]; Select[Range[ 11000], pnpfQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 12 2015 *)
  • PARI
    isok(n) = {nbf = omega(n); if (! isprime(nbf), return (0)); f = factor(n); for (i = 1, nbf, if (! isprime(f[i, 2]), return (0)); for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ Michel Marcus, Aug 18 2013

Extensions

Definition clarified by Harvey P. Dale, Aug 12 2015

A385288 Numbers with a prime number of prime factors, counted with multiplicity, and whose prime factors are each raised to a prime exponent.

Original entry on oeis.org

4, 8, 9, 25, 27, 32, 49, 72, 108, 121, 125, 128, 169, 200, 243, 288, 289, 343, 361, 392, 500, 529, 675, 800, 841, 961, 968, 972, 1125, 1323, 1331, 1352, 1369, 1372, 1568, 1681, 1800, 1849, 2048, 2187, 2197, 2209, 2312, 2700, 2809, 2888, 3087, 3125, 3267, 3481
Offset: 1

Views

Author

James C. McMahon, Jun 24 2025

Keywords

Comments

a(n) = A114129(n) through n=25; then a(26) = 961 and A114129(26) = 864.
Subset of A056166.
Subset of A001694. - Michael De Vlieger, Jun 25 2025.

Examples

			200 = 2^3 * 5^2; 200 has a prime number of prime factors, counted with multiplicity (3 + 2 = 5), and exponents 3 and 2 are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4],AllTrue[Last/@FactorInteger[#],PrimeQ]&&PrimeQ[PrimeOmega[#]]&]
  • PARI
    isok(k) = my(f=factor(k)); isprime(bigomega(k)) && (sum(k=1, #f~, isprime(f[k,2])) == omega(f)); \\ Michel Marcus, Jun 25 2025
Showing 1-6 of 6 results.