A114112 a(1)=1, a(2)=2; thereafter a(n) = n+1 if n odd, n-1 if n even.
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1
A383987 Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003).
0, 1, -5, 49, -725, 14401, -360005, 10863889, -384415925, 15612336481, -715930020005, 36592369889329, -2062911091119125, 127170577711282561, -8510569547826528005, 614491222512504748369, -47615614242877583230325, 3941408640018910366196641
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..353
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, triassociative operad "Trias".
Crossrefs
Programs
-
Mathematica
nn = 17; f[x_] := (1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383989 Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).
0, 1, -11, 61, -467, 4381, -49091, 643021, -9615827, 161844541, -3026079971, 62243374381, -1396619164787, 33949401567901, -888725861445251, 24926889744928141, -745755560487363347, 23705772035082494461, -797875590555470224931, 28346366547928396344301
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..407
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, operad "FF6".
Crossrefs
Programs
-
Mathematica
nn = 19; f[x_] := x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383992 Series expansion of the exponential generating function exp(arbustive(x)) - 1 where arbustive(x) = (log(1+x) - x^2) / (1+x).
0, 1, -4, 3, 40, -330, 1626, -3150, -54592, 1060920, -13022280, 127171440, -889086648, -283184616, 179750627616, -4895777544840, 99124001788800, -1721513264431680, 25736021675994816, -292896125040673728, 639149345262276480, 106178474282318726400
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..448
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 32, Table 3, operad "Arbustive".
Crossrefs
Programs
-
Mathematica
nn = 21; f[x_] := Exp[x] - 1; Range[0, nn]! * CoefficientList[Series[f[(Log[1 + x] - x^2)/(1 + x)], {x, 0, nn}], x]
A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.
0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..200
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, permutative commutative operad "Perm/Com2".
Crossrefs
Programs
-
Mathematica
nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}]; Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]
A383986 Expansion of the exponential generating function sqrt(4*exp(x) - exp(2*x) - 2) - 1.
0, 1, -1, 1, -13, 61, -601, 5881, -73333, 1021861, -16334401, 290146561, -5707536253, 122821558861, -2873553719401, 72586328036041, -1969306486088773, 57106504958139061, -1762735601974347601, 57705363524117482321, -1996916624448159410893
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..409
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, operad "NAC_2".
Crossrefs
Programs
-
Mathematica
nn = 20; f[x_] := -1 + Sqrt[1 + 2 x - x^2]; Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383988 Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).
0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0
Comments
The series -postLie(-x) is the inverse for the substitution of the series comTrias(x), given by the suspension of the Koszul dual of comTrias. - Bérénice Delcroix-Oger, May 28 2025
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..374
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, commutative triassociative operad "ComTrias".
Crossrefs
Programs
-
Mathematica
nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2]; Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A114284 Riordan array ((1-3*x)/(1-x), x).
1, -2, 1, -2, -2, 1, -2, -2, -2, 1, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, -2, -2, -2, -2, 1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 1
Offset: 0
Comments
Examples
Triangle begins: 1; -2,1; -2,-2,1; -2,-2,-2,1; -2,-2,-2,-2,1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Programs
-
Mathematica
Table[-2 - 3 Floor[1/2 (-1 + Sqrt[1 + 8 x])] + 3 Floor[1/2 (-1 + Sqrt[9 + 8 x])], {x, 0, 65}] (* Jackson Xier, Oct 07 2011 *)
Formula
T(n, k) = if(k<=n, 3*0^(n-k)-2, 0).
a(n) = -3*floor((1/2)*sqrt(8*n+1)-1/2)+3*floor((1/2)*sqrt(8*n+9)-1/2)-2. - Jackson Xier, Oct 07 2011
A243860 a(n) = 2^(n+1) - (n-1)^2.
1, 4, 7, 12, 23, 48, 103, 220, 463, 960, 1967, 3996, 8071, 16240, 32599, 65340, 130847, 261888, 523999, 1048252, 2096791, 4193904, 8388167, 16776732, 33553903, 67108288, 134217103, 268434780, 536870183, 1073741040, 2147482807, 4294966396, 8589933631, 17179868160, 34359737279, 68719475580
Offset: 0
Comments
Sequences of the form (k-1)^m - m^(k+1):
k\m | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
-----------------------------------------------------------------------
0 | 1 | -2 | -1 | -4 | -3 | -6 | -5 |
1 | 1 | -1 | -4 | -9 | -16 | -25 | -36 |
2 | 1 | 0 | -7 | -26 | -63 | -124 | -215 |
3 | 1 | 1 | -12 | -73 | -240 | -593 | -1232 |
4 | 1 | 2 | -23 | -216 | -943 | -2882 | -7047 |
5 | 1 | 3 | -43 | -665 | -3840 | -14601 | -42560 |
6 | 1 | 4 | -103 | -2062 | -15759 | -75000 | -264311 |
7 | 1 | 5 | -220 | -6345 | -64240 | -382849 | -1632960 |
8 | 1 | 6 | -463 | -19340 | -259743 | -1936318 | -9960047 |
9 | 1 | 7 | -960 | -58537 | -1044480 | -9732857 | -60204032 |
10 | 1 | 8 | -1967 | -176418 | -4187743 | -48769076 | -362265615 |
11 | 1 | 9 | -3996 | -530441 | -16767216 | -244040625 | -2175782336 |
Examples
1 = 2^(0+1) - (0-1)^2, 4 = 2^(1+1) - (1-1)^2, 7 = 2^(2+1) - (2-1)^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Crossrefs
Sequences of the form (k-1)^m - m^(k+1): A000012 (m = 0), A023444 (m = 1), (-1)*(this sequence) for m = 2, A114285 (k = 0),(A000007-A000290) for k = 1, A024001 (k = 2), A024014 (k = 3), A024028 (k = 4), A024042 (k = 5), A024056 (k = 6), A024070 (k = 7), A024084 (k = 8), A024098 (k = 9), A024112 (k = 10), A024126 (k = 11).
Programs
-
Magma
[2^(n+1) - (n-1)^2: n in [0..35]];
-
Maple
A243860:=n->2^(n + 1) - (n - 1)^2; seq(A243860(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
-
Mathematica
Table[2^(n + 1) - (n - 1)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 12 2014 *) LinearRecurrence[{5,-9,7,-2},{1,4,7,12},40] (* Harvey P. Dale, Nov 29 2015 *)
-
PARI
Vec((6*x^3-4*x^2-x+1)/((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 12 2014
Formula
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4). - Colin Barker, Jun 12 2014
G.f.: (6*x^3-4*x^2-x+1) / ((x-1)^3*(2*x-1)). - Colin Barker, Jun 12 2014
A289870 a(n) = n*(n + 1) for n odd, otherwise a(n) = (n - 1)*(n + 1).
-1, 2, 3, 12, 15, 30, 35, 56, 63, 90, 99, 132, 143, 182, 195, 240, 255, 306, 323, 380, 399, 462, 483, 552, 575, 650, 675, 756, 783, 870, 899, 992, 1023, 1122, 1155, 1260, 1295, 1406, 1443, 1560, 1599, 1722, 1763, 1892, 1935, 2070, 2115, 2256, 2303, 2450, 2499
Offset: 0
Comments
a(n) is a fifth-order linear recurrence whose main interest is that it is related to (at least) eight other sequences (see the formula section).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Mathematica
a[n_] := (n + 1)(n - 1 + Mod[n, 2]); Table[a[n], {n, 0, 50}]
-
PARI
a(n)=if(n%2, n, n-1)*(n+1) \\ Charles R Greathouse IV, Jul 14 2017
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Python
Formula
Extensions