1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 28, 25, 30, 40, 27, 36, 48, 64, 17, 26, 33, 44, 35, 42, 56, 50, 45, 60, 80, 54, 72, 96, 128, 19, 34, 39, 52, 55, 66, 88, 49, 70, 63, 84, 112, 75, 100, 90, 120, 160, 81, 108, 144, 192, 256
Offset: 0
The array is a tree structure as described by A128628. If a node value has only one branch the value is twice that of its parent node. If it has two branches one is twice that of its parent node but the other is defined as indicated below:
(1) pick an odd number (e.g., 135)
(2) calculate its prime factorization (135 = 5*3*3*3)
(3) note the least prime factor (LPF(135) = 3)
(4) note the index of the LPF (index(3) = 2)
(5) subtract one from the index (2-1 = 1)
(6) calculate the prime associated with the value in step five (prime(1) = 2)
(7) The parent node of the odd number 135 is (2/3)*135 = 90 = A252461(135).
From _Daniel Forgues_, Aug 07 2018: (Start)
Partitions of 4 in graded reverse lexicographic order:
{4}: p_4 = 7;
{3,1}: p_3 * p_1 = 5 * 2 = 10;
{2,2}: p_2 * p_2 = 3^2 = 9;
{2,1,1}: p_2 * p_1 * p_1 = 3 * 2^2 = 12;
{1,1,1,1}: p_1 * p_1 * p_1 * p_1 = 2^4 = 16. (End)
From _Gus Wiseman_, May 19 2020: (Start)
The sequence together with the corresponding partitions begins:
1: () 24: (2,1,1,1) 35: (4,3)
2: (1) 32: (1,1,1,1,1) 42: (4,2,1)
3: (2) 13: (6) 56: (4,1,1,1)
4: (1,1) 22: (5,1) 50: (3,3,1)
5: (3) 21: (4,2) 45: (3,2,2)
6: (2,1) 28: (4,1,1) 60: (3,2,1,1)
8: (1,1,1) 25: (3,3) 80: (3,1,1,1,1)
7: (4) 30: (3,2,1) 54: (2,2,2,1)
10: (3,1) 40: (3,1,1,1) 72: (2,2,1,1,1)
9: (2,2) 27: (2,2,2) 96: (2,1,1,1,1,1)
12: (2,1,1) 36: (2,2,1,1) 128: (1,1,1,1,1,1,1)
16: (1,1,1,1) 48: (2,1,1,1,1) 19: (8)
11: (5) 64: (1,1,1,1,1,1) 34: (7,1)
14: (4,1) 17: (7) 39: (6,2)
15: (3,2) 26: (6,1) 52: (6,1,1)
20: (3,1,1) 33: (5,2) 55: (5,3)
18: (2,2,1) 44: (5,1,1) 66: (5,2,1)
(End)
Comments