cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168610 a(n) = 3^n + 5.

Original entry on oeis.org

6, 8, 14, 32, 86, 248, 734, 2192, 6566, 19688, 59054, 177152, 531446, 1594328, 4782974, 14348912, 43046726, 129140168, 387420494, 1162261472, 3486784406, 10460353208, 31381059614, 94143178832, 282429536486, 847288609448
Offset: 0

Views

Author

Vincenzo Librandi, Dec 01 2009

Keywords

Crossrefs

Cf. A168613.

Programs

  • Magma
    I:=[6, 8]; [n le 2 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
    
  • Mathematica
    CoefficientList[Series[2*(3-8*x)/((1-x)*(1-3*x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
    LinearRecurrence[{4,-3}, {6, 8}, 25] (* G. C. Greubel, Jul 27 2016 *)
  • PARI
    a(n)=3^n+5 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*a(n-1) - 10 with a(0)=6.
G.f.: 2*(3 - 8*x)/((1-x)*(1-3*x)). - Vincenzo Librandi, Jul 06 2012
a(n) = 4*a(n-1) -3*a(n-2). - Vincenzo Librandi, Jul 06 2012
a(n) = 2*A115098(n)+2. - Bruno Berselli, Jul 06 2012
E.g.f.: exp(3*x) + 5*exp(x). - G. C. Greubel, Jul 27 2016

Extensions

Formula and examples edited to use correct offset by Jon E. Schoenfield, Jun 19 2010

A178674 a(n) = 3^n + 3.

Original entry on oeis.org

4, 6, 12, 30, 84, 246, 732, 2190, 6564, 19686, 59052, 177150, 531444, 1594326, 4782972, 14348910, 43046724, 129140166, 387420492, 1162261470, 3486784404, 10460353206, 31381059612, 94143178830, 282429536484, 847288609446, 2541865828332, 7625597484990, 22876792454964
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2010

Keywords

Comments

a(n) is the deficiency of 3^n * 5. - Patrick J. McNab, May 27 2017

Crossrefs

Programs

  • GAP
    List([0..40], n -> 3^n+3); # G. C. Greubel, Jan 27 2019
  • Magma
    [3^n+3: n in [0..35]];
    
  • Mathematica
    Table[3^n+3, {n, 0, 40}] (* or *) CoefficientList[Series[(4-10x)/((1-x) (1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
  • PARI
    a(n)=3^n+3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [3^n+3 for n in range(40)] # G. C. Greubel, Jan 27 2019
    

Formula

a(n) = 3*(a(n-1) - 2), a(0)=4.
From R. J. Mathar, Jan 05 2011: (Start)
G.f.: (4-10*x)/((1-3*x)*(1-x)).
a(n) = 2*A115098(n). (End)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1. - Vincenzo Librandi, May 13 2014
E.g.f.: exp(x)*(exp(2*x) + 3). - Elmo R. Oliveira, Apr 02 2025

A387435 Number of dominating sets in the n-Dorogovtsev-Goltsev-Mendes graph.

Original entry on oeis.org

3, 7, 45, 13293, 461504710485, 37306936154345310416554765472710125
Offset: 0

Views

Author

Eric W. Weisstein, Aug 29 2025

Keywords

Comments

a(6) has 104 decimal digits. - Andrew Howroyd, Aug 31 2025

Crossrefs

Cf. A115098 (domination number), A368456.

Programs

  • Mathematica
    Join[{3}, Map[{1, 2, 1} . # &, NestList[Function[{p2, q1, q2}, {p2 (p2^2 + q1^2), q1^2 (q2 + p2), q2 (q1^2 + q2^2)}] @@ # &, {1, 2, 2}, 7]]] (* Eric W. Weisstein, Sep 03 2025 *)
  • PARI
    step(v)={my([p2,q1,q2]=v); [p2*(p2^2+q1^2), q1^2*(q2+p2), q2*(q1^2+q2^2)]}
    a(n)={if(n==0, 3, my(v=[1,2,2]); for(i=2, n, v=step(v)); v[1]+2*v[2]+v[3])} \\ Andrew Howroyd, Aug 31 2025

Extensions

a(4) onwards from Andrew Howroyd, Aug 29 2025
Showing 1-3 of 3 results.