A168607
a(n) = 3^n + 2.
Original entry on oeis.org
3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gennady Eremin, Arithmetization of well-formed parenthesis strings. Motzkin Numbers of the Second Kind, arXiv:2012.12675 [math.CO], 2020.
- Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
-
[3^n+2: n in [0..30]];
-
A168607:=n->3^n + 2; seq(A168607(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014
-
CoefficientList[Series[(3 - 7 x)/((1-x) (1-3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
NestList[3 # - 4 & , 3, 25] (* Bruno Berselli, Feb 06 2013 *)
-
a(n)=3^n+2 \\ Charles R Greathouse IV, Oct 07 2015
A178674
a(n) = 3^n + 3.
Original entry on oeis.org
4, 6, 12, 30, 84, 246, 732, 2190, 6564, 19686, 59052, 177150, 531444, 1594326, 4782972, 14348910, 43046724, 129140166, 387420492, 1162261470, 3486784404, 10460353206, 31381059612, 94143178830, 282429536484, 847288609446, 2541865828332, 7625597484990, 22876792454964
Offset: 0
-
List([0..40], n -> 3^n+3); # G. C. Greubel, Jan 27 2019
-
[3^n+3: n in [0..35]];
-
Table[3^n+3, {n, 0, 40}] (* or *) CoefficientList[Series[(4-10x)/((1-x) (1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
-
a(n)=3^n+3 \\ Charles R Greathouse IV, Oct 07 2015
-
[3^n+3 for n in range(40)] # G. C. Greubel, Jan 27 2019
A168613
a(n) = 3^n - 5.
Original entry on oeis.org
-4, -2, 4, 22, 76, 238, 724, 2182, 6556, 19678, 59044, 177142, 531436, 1594318, 4782964, 14348902, 43046716, 129140158, 387420484, 1162261462, 3486784396, 10460353198, 31381059604, 94143178822, 282429536476, 847288609438
Offset: 0
-
I:=[-4, -2]; [n le 2 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
-
CoefficientList[Series[2*(7*x-2)/((1-x)*(1-3*x)),{x,0,40}],x] (* Vincenzo Librandi, Jul 06 2012 *)
LinearRecurrence[{4,-3}, {-4, -2}, 25] (* G. C. Greubel, Jul 27 2016 *)
3^Range[0,30]-5 (* Harvey P. Dale, Sep 12 2022 *)
A168609
a(n) = 3^n + 4.
Original entry on oeis.org
5, 7, 13, 31, 85, 247, 733, 2191, 6565, 19687, 59053, 177151, 531445, 1594327, 4782973, 14348911, 43046725, 129140167, 387420493, 1162261471, 3486784405, 10460353207, 31381059613, 94143178831, 282429536485, 847288609447
Offset: 0
a(1)=3*5-8=7; a(2)=3*7-8=13; a(3)=3*13-8=31.
-
[3^n+4: n in [0..30]]; // Vincenzo Librandi, May 13 2014
-
Table[3^n + 4, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
CoefficientList[Series[(5 - 13 x)/((1 - x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
LinearRecurrence[{4,-3},{5,7},30] (* Harvey P. Dale, Mar 11 2023 *)
A368350
a(n) is the least nonnegative integer k such that the 2-valuation of 3^k+5 is n, or -1 if no such number exists.
Original entry on oeis.org
0, -1, 1, 7, 3, 27, 43, 75, 139, 11, 779, 267, 1291, 3339, 7435, 32011, 48395, 81163, 146699, 277771, 15627, 1588491, 2637067, 539915, 4734219, 13122827, 63454475, 29900043, 231226635, 97008907, 902315275, 365444363, 1439186187, 3586669835, 7881637131
Offset: 1
a(2) = -1 because if 3^n+5 is divisible by 2^2, n must be odd, so 3^n+5 is divisible by 2^3.
a(10) = 11 because the 2-valuation of 3^11+5 is 10, and it's easy to verify that it is the least one.
Since a(13) = 1291 < 2^11, a(14) = 1291 + 2^12 +- 2^11. Then we can verify that the former is correct, thus a(14) = 3339.
-
a(n) = my(t=znlog(2^n-5, Mod(3, 2^(n+1)))); if(type(t)=="t_INT", t, -1);
Showing 1-5 of 5 results.
Comments