cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168607 a(n) = 3^n + 2.

Original entry on oeis.org

3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445
Offset: 0

Views

Author

Vincenzo Librandi, Dec 01 2009

Keywords

Comments

Second bisection is A134752.
It appears that if s(n) is a first order rational sequence of the form s(1)=5, s(n)= (2*s(n-1)+1)/(s(n-1)+2),n>1, then s(n)= a(n)/(a(n)-4), n>1. - Gary Detlefs, Nov 16 2010
Mahler exhibits this sequence with n>=1 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A125293 and x^2 belongs to A005836. - Michel Marcus, Nov 12 2012

Crossrefs

Cf. A008776 (2*3^n), A005051 (8*3^n), A034472 (3^n+1), A000244 (powers of 3), A024023 (3^n-1), A168609 (3^n+4), A168610 (3^n+5), A134752 (3^(2*n-1)+2).

Programs

Formula

a(n) = 3*a(n-1) - 4, a(0) = 3.
a(n+1) - a(n) = A008776(n).
a(n+2) - a(n) = A005051(n).
a(n) = A034472(n)+1 = A000244(n)+2 = A024023(n)+3 = A168609(n)-2 = A168610(n)-3.
G.f.: (3 - 7*x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), a(0) = 3, a(1) = 5. - Vincenzo Librandi, Feb 06 2013
E.g.f.: exp(3*x) + 2*exp(x). - Elmo R. Oliveira, Nov 09 2023

Extensions

Edited by Klaus Brockhaus, Apr 13 2010
Further edited by N. J. A. Sloane, Aug 10 2010

A178674 a(n) = 3^n + 3.

Original entry on oeis.org

4, 6, 12, 30, 84, 246, 732, 2190, 6564, 19686, 59052, 177150, 531444, 1594326, 4782972, 14348910, 43046724, 129140166, 387420492, 1162261470, 3486784404, 10460353206, 31381059612, 94143178830, 282429536484, 847288609446, 2541865828332, 7625597484990, 22876792454964
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2010

Keywords

Comments

a(n) is the deficiency of 3^n * 5. - Patrick J. McNab, May 27 2017

Crossrefs

Programs

  • GAP
    List([0..40], n -> 3^n+3); # G. C. Greubel, Jan 27 2019
  • Magma
    [3^n+3: n in [0..35]];
    
  • Mathematica
    Table[3^n+3, {n, 0, 40}] (* or *) CoefficientList[Series[(4-10x)/((1-x) (1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
  • PARI
    a(n)=3^n+3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [3^n+3 for n in range(40)] # G. C. Greubel, Jan 27 2019
    

Formula

a(n) = 3*(a(n-1) - 2), a(0)=4.
From R. J. Mathar, Jan 05 2011: (Start)
G.f.: (4-10*x)/((1-3*x)*(1-x)).
a(n) = 2*A115098(n). (End)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1. - Vincenzo Librandi, May 13 2014
E.g.f.: exp(x)*(exp(2*x) + 3). - Elmo R. Oliveira, Apr 02 2025
Showing 1-2 of 2 results.