cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116415 a(n) = 5*a(n-1) - 3*a(n-2).

Original entry on oeis.org

1, 5, 22, 95, 409, 1760, 7573, 32585, 140206, 603275, 2595757, 11168960, 48057529, 206780765, 889731238, 3828313895, 16472375761, 70876937120, 304967558317, 1312206980225, 5646132226174, 24294040190195, 104531804272453
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums of A116414.
Partial sums of A018902. - Greg Dresden and Mulong Xu, Aug 31 2024
Binomial transform of the sequence A006190. - Sergio Falcon, Nov 23 2007
a(n+1) equals the number of words of length n over {0,1,2,3,4} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015

Crossrefs

Programs

Formula

G.f.: 1/(1 - 5*x + 3*x^2).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n-j,k)*C(k+j,j)*3^j.
a(n) = (1/sqrt(13))*(((5+sqrt(13))/2)^n - ((5-sqrt(13))/2)^n). - Sergio Falcon, Nov 23 2007
If p[i] = (3^i-1)/2, and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = 4*a(n-1) + a(n-2) + a(n-3) + ... + a(0) + 1. These expansions with the partial sums on one side can be generated en masse by taking the g.f. of the partial sum and its partial fraction, 1/(1-x)/(1 - 5*x + 3*x^2) = -1/(1-x)+(2-3*x)/(1 - 5*x + 3*x^2) and reading this as a(0) + a(1) + ... + a(n) = -1 + 2*a(n)- 3*a(n-1). - Gary W. Adamson, Feb 18 2011