cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A054142 Triangular array binomial(2*n-k, k), k=0..n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 15, 10, 1, 1, 9, 28, 35, 15, 1, 1, 11, 45, 84, 70, 21, 1, 1, 13, 66, 165, 210, 126, 28, 1, 1, 15, 91, 286, 495, 462, 210, 36, 1, 1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are odd-indexed Fibonacci numbers.
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k double rises. Mirror image of A085478. - Emeric Deutsch, May 31 2004
Diagonal sums are A052535. - Paul Barry, Jan 21 2005
Matrix inverse is the triangle of Salie numbers A098435. - Paul Barry, Jan 21 2005
Coefficients of Morgan-Voyce polynomial b(n,x); e.g., b(3,x)=x^3+5x^2+6x+1. See A172431 for coefficients of Morgan-Voyce polynomial B(n,x). - Clark Kimberling, Feb 13 2010
T(n,k) is the number of stack polyominoes of perimeter 2n+4 with k+1 columns. - Emanuele Munarini, Apr 07 2011
Roots of signed n-th polynomials are chaotic with respect to the operation (-2, x^2), with cycle lengths A003558(n). Example: starting with a root to x^3 - 5x^2 + 6x - 1 = 0; (2 + 2*cos(2*Pi/N) = 3.24697... = A116415; we obtain the trajectory (3.24697...-> 1.55495...-> 0.198062...; the 3 roots to the polynomial with cycle length 3 matching A003558(3) = 3. The operation (-2, x^2) is the reversal of the well known chaotic operation (x^2 - 2) [Kappraff, Adamson, 2004] starting with seed 2*cos(2*Pi/N). Check: given 2*cos(2*Pi/7) = 1.24697..., we obtain the 3-cycle using (x^2 - 2): (1.24697...-> -0.445041...-> 1.801937...; where the terms in either set are intermediate terms in the other, irrespective of sign. - Gary W. Adamson, Sep 22 2011
A054142 is jointly generated with A172431 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section of A172431. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 01 2012
The o.g.f. for row n of the array A(n, k) = binomial(2*n-k,k), k >= 0, n >= 0 is G(n,x) = Sum_{k=0..n} T(n, k)*x^k + (-x)^(2*n+1) * c(-x)^(2*n+1) / sqrt(1-4*(-x)), for n >= 0. Here c(x) is the o.g.f. of A000108 (Catalan). For powers of c(x) see the W. Lang link in A115139. For the alternating sign case replace x by -x. - Wolfdieter Lang, Sep 12 2016
Multiplying the n-th diagonal by A001147(n) generates A001497. - Tom Copeland, Oct 04 2016

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  6,   1;
  1,  7, 15,  10,   1;
  1,  9, 28,  35,  15,   1;
  1, 11, 45,  84,  70,  21,   1;
  1, 13, 66, 165, 210, 126,  28,  1;
  1, 15, 91, 286, 495, 462, 210, 36, 1; ...
...
(0, 1, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3,  1;
  0, 1, 5,  6,  1;
  0, 1, 7, 15, 10,  1;
  0, 1, 9, 28, 35, 15, 1. _Philippe Deléham_, Apr 01 2012
		

Crossrefs

These are the even-indexed rows of A011973, the odd-indexed rows form A053123.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n-k,k) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T:=(n,k)->binomial(2*n-k,k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    Flatten[Table[Binomial[2n - k, k], {n, 0, 11}, {k, 0, n}]] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    create_list(binomial(2*n-k,k),n,0,10,k,0,n); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    T(n,k)=if(n<0,0,polcoeff(charpoly(matrix(n,n,i,j,-min(i,j))),k))
    
  • Sage
    [[binomial(2*n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-t*z)/((1-t*z)^2-z). - Emeric Deutsch, May 31 2004
Column k has g.f.: (Sum_{j=0..k+1} binomial(k+1, 2j)*x^j)*x^k/(1-x)^(k+1). - Paul Barry, Jun 22 2005
Recurrence: T(n+2,k+2) = T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k). - Emanuele Munarini, Apr 07 2011
T(n, k) = binomial(2*n-k, k) = A085478(n, n-k), for n >= 0, k = 0..n. - Wolfdieter Lang, Mar 25 2020

A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Riordan array (1/(1-x-x^2), x(1-x)/(1-x-x^2)). Row sums are A000079. Diagonal sums are A006053(n+2). - Paul Barry, Nov 01 2006
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 05 2012
Mirror image of triangle in A208342. - Philippe Deléham, Mar 05 2012
A053538 is jointly generated with A076791 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1, for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section at A076791. - Clark Kimberling, Mar 08 2012
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
1, -2, -1, 1;
3, 1, -3, -1, 1;
1, 6, 1, -4, -1, 1;
-7, 4, 10, 1, -5, -1, 1;
-13, -13, 8, 15, 1, -6, -1, 1;
3, -31, -23, 13, 21, 1, -7, -1, 1; - R. J. Mathar, Mar 15 2013
Also appears to be the number of subsets of {1..n} containing n with k maximal anti-runs of consecutive elements increasing by more than 1. For example, the subset {1,3,6,7,11,12} has maximal anti-runs ((1,3,6),(7,11),(12)) so is counted under a(12,3). For runs instead of anti-runs we get A202064. - Gus Wiseman, Jun 26 2025

Examples

			n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}
Triangle begins :
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1, 1;
   5,  5,  4, 1, 1;
   8, 10,  7, 5, 1, 1;
  13, 18, 16, 9, 6, 1, 1;
...
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,  1;
  0,  3,  3,  1, 1;
  0,  5,  5,  4, 1, 1;
  0,  8, 10,  7, 5, 1, 1;
  0, 13, 18, 16, 9, 6, 1, 1;
		

Crossrefs

Column k = 1 is A000045.
Row sums are A000079.
Column k = 2 is A010049.
For runs instead of anti-runs we have A202064.
For integer partitions see A268193, strict A384905, runs A116674.
A034839 counts subsets by number of maximal runs.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.
A384893 counts subsets by number of maximal anti-runs.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j->  Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
  • Magma
    [[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
    
  • Maple
    a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):
    seq(seq(a(n,m), m=0..n), n=0..12);  # Alois P. Heinz, Sep 19 2013
  • Mathematica
    Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
  • PARI
    {T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
    

Formula

From Philippe Deléham, Mar 05 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: 1/(1-(1+y)*x-(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. (End)

A052961 Expansion of (1 - 3*x) / (1 - 5*x + 3*x^2).

Original entry on oeis.org

1, 2, 7, 29, 124, 533, 2293, 9866, 42451, 182657, 785932, 3381689, 14550649, 62608178, 269388943, 1159120181, 4987434076, 21459809837, 92336746957, 397304305274, 1709511285499, 7355643511673, 31649683701868, 136181487974321, 585958388766001, 2521247479907042
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of tilings of a 2 X n rectangle using integer dimension tiles at least one of whose dimensions is 1, so allowable dimensions are 1 X 1, 1 X 2, 1 X 3, 1 X 4, ..., and 2 X 1. - David Callan, Aug 27 2014
a(n+1) counts closed walks on K_2 containing one loop on the index vertex and four loops on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(1,1;1,4). - _David Neil McGrath, Nov 05 2014
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 4, 0, 0, 0, 0, ...
1, 0, 0, 4, 0, 0, 0, ...
1, 0, 0, 0, 4, 0, 0, ...
1, 0, 0, 0, 0, 4, 0, ...
1, 0, 0, 0, 0, 0, 4, ...
...
Take powers of M and extract the upper left term, getting the sequence starting (1, 1, 2, 7, 29, 124, ...). - Gary W. Adamson, Jul 22 2016
From Gary W. Adamson, Jul 29 2016: (Start)
The sequence is N=1 in an infinite set obtained from matrix powers of [(1,N); (1,4)], extracting the upper left terms.
The infinite set begins:
N=1 (A052961): 1, 2, 7, 29 124, 533, 2293, ...
N=2 (A052984): 1, 3, 13, 59, 269, 1227, 5597, ...
N=3 (A004253): 1, 4, 19, 91, 436, 2089, 10009, ...
N=4 (A000351): 1, 5, 25, 125, 625, 3125, 15625, ...
N=5 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ...
N=6 (A124610): 1, 7, 37, 199, 1069, 5743, 30853, ...
N=7 (A111363): 1, 8, 43, 239, 1324, 7337, 40653, ...
N=8 (A123270): 1, 9, 49, 281, 1601, 9129, 52049, ...
N=9 (A188168): 1, 10, 55, 325, 1900, 11125, 65125, ...
N=10 (A092164): 1, 11, 61, 371, 2221, 13331, 79981, ...
... (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*a[n-1]-3*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    spec:= [S,{S = Sequence(Union(Prod(Sequence(Union(Z,Z,Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size = n), n = 0..20);
    seq(coeff(series((1-3*x)/(1-5*x+3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,2},30] (* Harvey P. Dale, Nov 23 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+3*x^2)) \\ G. C. Greubel, Oct 23 2019
    
  • Sage
    def A052961_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-5*x+3*x^2)).list()
    A052961_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

G.f.: (1-3*x)/(1-5*x+3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), with a(0) = 1, a(1) = 2.
a(n) = Sum_{alpha=RootOf(1-5*z+3*z^2)} (-1 + 9*alpha)*alpha^(-1-n)/13.
E.g.f.: (1 + sqrt(13) + (sqrt(13)-1) * exp(sqrt(13)*x)) / (2*sqrt(13) * exp(((sqrt(13)-5)*x)/2)). - Vaclav Kotesovec, Feb 16 2015
a(n) = A116415(n) - 3*A116415(n-1). - R. J. Mathar, Feb 27 2019

A368150 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.

Original entry on oeis.org

1, 1, 3, 2, 6, 8, 3, 15, 25, 21, 5, 30, 76, 90, 55, 8, 60, 188, 324, 300, 144, 13, 114, 439, 948, 1251, 954, 377, 21, 213, 961, 2529, 4207, 4527, 2939, 987, 34, 390, 2026, 6246, 12606, 17154, 15646, 8850, 2584, 55, 705, 4136, 14640, 34590, 56970, 65840
Offset: 1

Views

Author

Clark Kimberling, Dec 25 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    3
   2    6    8
   3   15   25    21
   5   30   76    90     55
   8   60  188   324    300   144
  13  114  439   948   1251   954   377
  21  213  961  2529   4207  4527  2939   987
Row 4 represents the polynomial p(4,x) = 3 + 15*x + 25*x^2 + 21*x^3, so (T(4,k)) = (3,15,25,21), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A001906 (p(n,n-1)); A000302 (row sums), (p(n,1)); A122803 (alternating row sums), (p(n,-1)); A190972 (p(n,2)), A116415, (p(n,-2)); A190990, (p(n,3)); A057084, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368151.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k).

A116414 Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).

Original entry on oeis.org

1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412.
Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
    1;
    4,   1;
   13,   8,   1;
   40,  42,  12,   1;
  121, 184,  87,  16,  1;
  364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,   1;
  0,   4,   1;
  0,  13,   8,   1;
  0,  40,  42,  12,   1;
  0, 121, 184,  87,  16,  1;
  0, 364, 731, 496, 148, 20, 1;
  ... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Oct 31 2013
G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - Philippe Deléham, Oct 31 2013
From Peter Bala, Oct 07 2019: (Start)
O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + ....
Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y.
The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End)

A010903 Pisot sequence E(3,13): a(n) = floor(a(n-1)^2/a(n-2) + 1/2).

Original entry on oeis.org

3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072, 61589856118237, 265007332436969, 1140267093830134
Offset: 0

Views

Author

Keywords

Comments

According to Boyd (Acta Arithm. 32 (1977) p 89), quoting Pisot, every E(3,.) sequence satisfies a linear recurrence of at most order 3. Here this is easily derived from the first terms of the sequence. - R. J. Mathar, May 26 2008
A010920 coincides with this sequence for at least the first 32600 terms and probably more. - R. J. Mathar, May 26 2008
For n >= 1, a(n-1) is the number of generalized compositions of n when there are i+2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Crossrefs

Cf. A010920.

Programs

  • Mathematica
    LinearRecurrence[{5, -3}, {3, 13}, 24] (* Jean-François Alcover, Oct 22 2019 *)
    nxt[{a_,b_}]:={b,Floor[b^2/a+1/2]}; NestList[nxt,{3,13},30][[;;,1]] (* Harvey P. Dale, Mar 29 2025 *)
  • PARI
    Vec((3-2*x)/(1-5*x+3*x^2) + O(x^30)) \\ Colin Barker, Jul 27 2016

Formula

a(n) = 5*a(n-1) - 3*a(n-2) = 3*A116415(n) - 2*A116415(n-1). - R. J. Mathar, May 26 2008
O.g.f.: (3-2*x)/(1-5*x+3*x^2). - R. J. Mathar, May 26 2008
a(n) = (2^(-1-n)*((5-sqrt(13))^n*(-11+3*sqrt(13)) + (5+sqrt(13))^n*(11+3*sqrt(13))))/sqrt(13). - Colin Barker, Nov 26 2016

A109114 a(n) = 5*a(n-1) - 3*a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 27, 117, 504, 2169, 9333, 40158, 172791, 743481, 3199032, 13764717, 59226489, 254838294, 1096512003, 4718045133, 20300689656, 87349312881, 375844495437, 1617174538542, 6958339206399, 29940172416369, 128825844462648
Offset: 0

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 302, P_{11}).

Programs

  • Maple
    a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=5*a[n-1]-3*a[n-2] od: seq(a[n],n=0..26);
  • Mathematica
    LinearRecurrence[{5,-3},{1,6},30] (* Harvey P. Dale, Dec 03 2012 *)

Formula

a(n) = ((sqrt(13) + 7)*((5 + sqrt(13))/2)^n + (sqrt(13) - 7)*((5 - sqrt(13))/2)^n)/(2*sqrt(13)).
G.f.: (1+z)/(1 - 5z + 3z^2).
a(n) = A116415(n)+A116415(n-1). - R. J. Mathar, Jul 26 2022

A228569 Binomial transform of A006497.

Original entry on oeis.org

2, 5, 19, 80, 343, 1475, 6346, 27305, 117487, 505520, 2175139, 9359135, 40270258, 173273885, 745558651, 3207971600, 13803182047, 59391995435, 255550431034, 1099576168865, 4731229551223, 20357419249520, 87593407593931, 376894780221095, 1621693678323682
Offset: 0

Views

Author

R. J. Mathar, Nov 10 2013

Keywords

Programs

  • Mathematica
    LinearRecurrence[{5,-3},{2,5},30] (* Harvey P. Dale, Sep 09 2017 *)

Formula

G.f.: ( 2-5*x ) / ( 1-5*x+3*x^2 ).
a(n) = 2*A116415(n)-5*A116315(n-1) for n>0.

A106732 Expansion of -3*x/(1 - 5*x + 3*x^2).

Original entry on oeis.org

0, -3, -15, -66, -285, -1227, -5280, -22719, -97755, -420618, -1809825, -7787271, -33506880, -144172587, -620342295, -2669193714, -11484941685, -49417127283, -212630811360, -914902674951, -3936620940675, -16938396678522, -72882120570585
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Crossrefs

Cf. A116415.

Programs

  • Magma
    [n le 2 select -3*(1+(-1)^n)/2 else 5*Self(n-1) - 3*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
    
  • Maple
    a[0]:=0: a[1]:=-3: for n from 2 to 22 do a[n]:=5*a[n-1]-3*a[n-2] od: seq(a[n], n=0..30);
  • Mathematica
    LinearRecurrence[{5,-3}, {0,-3}, 31] (* G. C. Greubel, Sep 10 2021 *)
    CoefficientList[Series[-3x/(1-5x+3x^2),{x,0,30}],x] (* Harvey P. Dale, Jan 29 2025 *)
  • Sage
    [-3^((n+1)/2)*chebyshev_U(n-1, 5/(2*sqrt(3))) for n in (0..30)] # G. C. Greubel, Sep 10 2021

Formula

G.f.: -3*x/(1 - 5*x + 3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), a(0) = 0, a(1) = -3.
a(n) = -3*A116415(n-1), n>0.
a(n) = -3^((n+1)/2)*ChebyshevU(n-1, 5/(2*sqrt(3))). - G. C. Greubel, Sep 10 2021

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
New name by G. C. Greubel, Sep 10 2021
Showing 1-10 of 12 results. Next