cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A118799 Determinants of 4 X 4 matrices of 16 consecutive primes.

Original entry on oeis.org

880, -448, -1472, -240, 2480, -1352, -4128, -96, 2736, -2520, 120, 1080, 4288, 4880, 4600, 13368, 7056, 14560, 2960, 13320, 0, 24864, -11096, -24264, 0, -9168, -2128, -15792, 0, 18120, -5248, 6384, -21840, -38776, -20480, 20176, -72896, -69200, 40080, -37632
Offset: 1

Views

Author

Jonathan Vos Post, May 23 2006

Keywords

Comments

4 X 4 analog of A117330.
All terms are even. - Harvey P. Dale, May 05 2016

Examples

			a(1) = 880 =
  | 2  3  5  7|
  |11 13 17 19|
  |23 29 31 37|
  |41 43 47 53|.
a(10) = -2520 =
  |29 31 37 41|
  |43 47 53 59|
  |61 67 71 73|
  |79 83 89 97|.
a(21) = 0 =
  | 73  79  83  89|
  | 97 101 103 107|
  |109 113 127 131|
  |137 139 149 151|.
		

Crossrefs

Programs

  • Maple
    A118799 := proc(n)
        local A,i,r,c ;
        A := Matrix(4,4) ;
        i := n ;
        for r from 1 to 4 do
        for c from 1 to 4 do
            A[r,c] := ithprime(i) ;
            i := i+1 ;
        end do:
        end do:
        LinearAlgebra[Determinant](A) ;
    end proc: # R. J. Mathar, May 05 2013
  • Mathematica
    Module[{nn=60,prs},prs=Prime[Range[nn]];Table[Det[Partition[ Take[ prs, {n,n+15}],4]],{n,nn-15}]] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    a(n) = matdet(matrix(4,4,i,j,prime((n+j-1)+4*(i-1)))); \\ Michel Marcus, Jan 25 2021

A118780 Semiprime(n)*semiprime(n+3) - semiprime(n+1)*semiprime(n+2), where semiprime(n) is the n-th semiprime.

Original entry on oeis.org

-14, -6, -5, 0, -7, -87, -4, 76, -8, -212, 64, -4, 128, 68, -265, 31, -12, -177, 104, 109, -28, 103, -101, -40, -24, -348, -176, 253, 81, -285, -97, 928, 364, -841, -257, -361, -127, -3, -125, 603, 359, -675, 367, -8, -860, 139, -3, 995, 280, -1276, -167, 629, 145, 443, -365, -579, 171, -569
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

Semiprime analog of A117301.
By construction, every entry is also the difference between two 4-almost primes: a(1) = A014613(4)-A014613(5); a(2) = A014613(9)-A014613(11); a(3) = A014613(16)-A014613(18); a(4) = A014613(27)-A014613(27); etc. - R. J. Mathar, Nov 27 2007

Examples

			a(1) = -14 because the determinant of the first block of 4 consecutive semiprimes is:
|4. 6.|
|9. 10|.
a(4) = 0 because the determinant of the 4th block of 4 semiprimes is the first of a presumably infinite number of singular matrices:
|10. 14.|
|15. 21.|.
a(8) = 76, the first positive value in the sequence:
|22. 25.|
|26. 33.|.
		

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember ; local a; if n = 1 then 4 ; else for a from A001358(n-1)+1 do if numtheory[bigomega](a)= 2 then RETURN(a) ; fi ; od: fi ; end: A118780 := proc(n) A001358(n)*A001358(n+3)-A001358(n+1)*A001358(n+2) ; end: seq(A118780(n),n=1..58) ; # R. J. Mathar, Nov 27 2007
  • Mathematica
    nmax = 58; spmax = nmax; SP = {};
    While[nmax+3 > Length[SP], spmax += nmax; SP = Select[Range[spmax], PrimeOmega[#] == 2&]];
    a[n_] := SP[[n]] SP[[n+3]] - SP[[n+1]] SP[[n+2]];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 01 2023 *)
    #[[1]]#[[4]]-#[[2]]#[[3]]&/@Partition[Select[Range[300],PrimeOmega[#]==2&],4,1] (* Harvey P. Dale, Sep 08 2024 *)

Formula

a(n) = A001358(n)*A001358(n+3) - A001358(n+1)*A001358(n+2).

Extensions

Better definition from Jens Kruse Andersen, May 03 2008

A118781 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive semiprimes.

Original entry on oeis.org

-196, 272, -251, 149, -423, 909, -408, -452, 958, -123, -112, -460, 84, -271, -187, -162, 63, 7, 101, -483, -133, 205, -860, -46, 339, 1178, 848, 366, 1084, 719, -384, 334, -2736, -984, -1912, 214, 34, 40, -1735, -60, 64, -2263, -3468, 5795, 69, 132, 3007, 256, 2130, 3428
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2006

Keywords

Comments

Semiprime analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this 3 X 3 semiprime case) block 1: 4, 6, 9, 10, 14, 15, 21, 22, 25; block 2: 26, 33, 34, 35, 38, 39, 46, 49, 51; and so forth.

Examples

			a(1) = -196 because the determinant of the first continuous block of 9 semiprimes is:
| 4. 6. 9.|
|10. 14. 15.|
|21. 22. 25.|.
a(9) = 958 because the determinant of the 9th continuous block of 9 semiprimes is:
|25. 26. 33.|
|34. 35. 38.|
|39. 46. 49.|.
a(50) = 3428 because the determinant of the 50th continuous block of 9 semiprimes is:
|146. 155. 158.|
|159. 161. 166.|
|169. 177. 178.|.
		

Crossrefs

Programs

  • Maple
    A118781 := proc(n)
        local A,i,r,c ;
        A := Matrix(3,3) ;
        i := n ;
        for r from 1 to 3 do
        for c from 1 to 3 do
            A[r,c] := A001358(i) ;
            i := i+1 ;
        end do:
        end do:
        LinearAlgebra[Determinant](A) ;
    end proc: # R. J. Mathar, May 05 2013
  • Mathematica
    Det/@(Partition[#,3]&/@(Partition[Select[Range[200],PrimeOmega[ #] == 2&],9,1])) (* Harvey P. Dale, Nov 29 2015 *)

Formula

a(n) = s(n)*s(n+4)*s(n+8) - s(n)*s(n+5)*s(n+7) - s(n+1)*s(n+3)*s(n+8) + s(n+1)*s(n+5)*s(n+6) + s(n+2)*s(n+3)*s(n+7) - s(n+2)*s(n+4)*s(n+6) where s(n) = A001358(n) is the n-th semiprime.

A118815 Determinants of 5 X 5 matrices consisting of 25 consecutive primes.

Original entry on oeis.org

-4656, 1440, 2912, 2832, -10464, -768, -17376, 20384, -72976, -18944, 12672, 41184, -199776, 28944, -21104, 3552, 25488, 338448, -60192, 39952, -21792, -161904, 499488, -83424, -7440, 7440, -54288, -75456, 1641792, 42288
Offset: 1

Views

Author

Jonathan Vos Post, May 23 2006

Keywords

Comments

5 X 5 analog of A117330.

Examples

			a(1) = -4656 =
  | 2  3  5  7 11|
  |13 17 19 23 29|
  |31 37 41 43 47|
  |53 59 61 67 71|
  |73 79 83 89 97|.
		

Crossrefs

Programs

  • PARI
    a(n) = matdet(matrix(5,5,i,j,prime((n+j-1)+5*(i-1)))); \\ Michel Marcus, Jan 25 2021

A118877 Determinant of n-th continuous block of 4 consecutive composites.

Original entry on oeis.org

-12, -12, 6, 6, -18, -18, 12, 12, -24, -24, 18, -3, -28, -2, -2, 24, 24, -36, -36, -2, -2, 32, -3, -42, 36, 36, -48, -48, 42, -3, -52, -2, -2, 48, -3, -58, -2, -2, 54, 54, -66, -66, -2, -2, 62, -3, -72, 66, 66, -78, -78, -2, -2, 74, -3, -84, 78, -3, -88, -2, -2
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2006

Keywords

Comments

Composites analog of A117301 Determinants of 2 X 2 matrices of continuous blocks of 4 consecutive primes. See also: A118780 Determinants of 2 X 2 matrices of continuous blocks of 4 consecutive semiprimes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this composites case) block 1: 4, 6, 8, 9; block 2: 10, 12, 14, 15 and so forth. It is not until a(12) that we break the pattern of a(2n)=a(2n-1); there seem to be strangely many such pairs of two identical values. a(12) is also the first odd value in the sequence and the first prime.

Examples

			a(1) = -12 =
|4 6|
|8 9|.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=100,cmps},cmps=Select[Range[nn],CompositeQ];Det[ ArrayReshape[ #,{2,2}]]&/@Table[Take[cmps,{n,n+3}],{n,Length[cmps]-3}]] (* Harvey P. Dale, Aug 03 2020 *)

Formula

a(n) = A002808(n)*A002808(n+3) - A002808(n+1)*A002808(n+2).

A118983 Determinant of 3 X 3 matrices of n-th continuous block of 9 consecutive composites.

Original entry on oeis.org

24, 12, 0, 15, 30, 18, -4, -4, 34, -4, -4, 22, 8, 8, 0, -8, -8, 38, 4, 4, 26, 4, 4, 42, -4, -4, 58, -4, -4, 50, 4, 7, -7, -4, 52, 8, 8, 0, -8, -8, 68, 4, 4, 56, 4, 4, 80, -8, -8, 80, 4, 4, -4, 0, 4, -4, -4, 86, 4, 7
Offset: 1

Views

Author

Jonathan Vos Post, May 25 2006

Keywords

Comments

Analog of A117330 with composites instead of primes.

Examples

			a(1) = 24 =
  | 4   6   8|
  | 9  10  12|
  |14  15  16|.
a(3) = 0 because of the first of an infinite number of singular matrices:
  | 8   9  10|
  |12  14  15|
  |16  18  20|.
a(15) = 0 because of the singular matrix:
  |25  26  27|
  |28  30  32|
  |33  34  35|.
a(38) = 0 because of the singular matrix:
  |55  56  57|
  |58  60  62|
  |63  64  65|.
a(54) = 0 because of the singular matrix:
  |76  77  78|
  |80  81  82|
  |84  85  86|.
		

Crossrefs

Programs

Formula

a(n) = c(n)*c(n+4)*c(n+8) - c(n)*c(n+5)*c(n+7) - c(n+1)*c(n+3)*c(n+8) + c(n+1)*c(n+5)*c(n+6) + c(n+2)*c(n+3)*c(n+7) - c(n+2)*c(n+4)*c(n+6) where c(n) = A002808(n) is the n-th composite.

A370455 a(n) = greatest m such that 2^m divides prime(n+1)*prime(n+2) - prime(n)*prime(n+3).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 3, 1, 4, 1, 3, 3, 3, 1, 2, 4, 1, 4, 1, 1, 2, 2, 1, 1, 3, 2, 3, 3, 3, 2, 1, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 4, 1, 3, 1, 3, 7, 1, 2, 2, 2, 3, 2, 4, 1, 3, 1, 2, 1, 3, 3, 3, 1, 2, 2, 1, 5, 2, 2, 1, 1, 2, 2, 1, 5, 1, 1, 3, 3, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2024

Keywords

Examples

			prime(4)*prime(5) - prime(3)*prime(6) = 7*11 - 5*13 = 12, which is divisible by 2^2 but not 2^3, so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Prime[n];
    u = Table[p[n + 1] p[n + 2] - p[n] p[n + 3], {n, 1, 2000}];  (* A117302 *)
    s[n_] := Last[Select[Range[15], IntegerQ[u[[n]]/2^#] &]];
    Table[s[n], {n, 1, 200}]
  • PARI
    a(n) = valuation(prime(n+1)*prime(n+2) - prime(n)*prime(n+3), 2); \\ Michel Marcus, Mar 01 2024
    
  • Python
    from sympy import prime
    def A370455(n): return (~(m:=prime(n+1)*prime(n+2)-prime(n)*prime(n+3)) & m-1).bit_length() # Chai Wah Wu, Mar 02 2024

A118873 Determinant of n-th continuous block of 4 consecutive squares of primes.

Original entry on oeis.org

-29, -136, -1704, -6288, -5160, -14928, 52080, -97968, -84000, 98112, -524400, -84048, 637488, 231288, -1558440, -343200, 844152, -2799840, 1152360, 1469160, -783240, 4153800, -4254000, -11947320, -498768, -264360, -559248, 32952432, -2061360, -37128408, -10466400, 18355512
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2006

Keywords

Comments

Quadratic analog of A117301 Determinants of 2 X 2 matrices of continuous blocks of 4 consecutive primes. See also: A001248 Squares of primes. The terminology "continuous" is used to distinguish from "discrete" which would be block 1: 4, 9, 25, 49; block 2: 121, 169, 289, 361; and so forth. Through n = 10^6, the number of negative values a(n) in this sequence appears to be consistently larger than the number of positive values.

Examples

			a(1) = -29 =
  | 4   9|
  |25  49|.
		

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(2, (i,j)-> ithprime(n+2*i-3+j)^2)):
    seq(a(n), n=1..32);  # Alois P. Heinz, Jan 25 2021
  • Mathematica
    m = 32; p = Prime[Range[m + 3]]^2; Table[Det @ Partition[p[[n ;; n + 3]], 2], {n, 1, m}] (* Amiram Eldar, Jan 25 2021 *)
  • PARI
    a(n) = prime(n)^2*prime(n+3)^2 - prime(n+1)^2*prime(n+2)^2; \\ Michel Marcus, Jan 25 2021

Formula

a(n) = prime(n)^2*prime(n+3)^2 - prime(n+1)^2*prime(n+2)^2.

A118875 Determinant of n-th continuous block of 9 consecutive squares of primes.

Original entry on oeis.org

-213720, 114432, -548352, 892800, -1774080, -7289856, 10105344, -79557120, -97790976, 171740160, 147556224, 56531520, -380053440, 122206464, -164292480, -958000320, 394761600, 189907200, 1139760000, -3023127360, -1495428480, -4260988800, -14501393280, 7022695680
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2006

Keywords

Comments

Quadratic analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. See also: A001248 Squares of primes. The terminology "continuous" is used to distinguish from "discrete" which would be block 1: 4, 9, 25, 49, 121, 169, 289, 361, 529; block 2: 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721; and so forth.

Examples

			a(1) = -213720 =
  |  4    9   25|
  | 49  121  169|
  |289  361  529|.
a(2) =
  |   9  25  49|
  | 121 169 289|
  | 361 529 841|.
		

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(3, (i,j)-> ithprime(n+3*i-4+j)^2)):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jan 25 2021
  • Mathematica
    m = 24; p = Prime[Range[m + 8]]^2; Table[Det @ Partition[p[[n ;; n + 8]], 3], {n, 1, m}] (* Amiram Eldar, Jan 25 2021 *)
  • PARI
    a(n) = matdet(matrix(3, 3, i, j, prime((n+j-1)+3*(i-1))^2)); \\ Michel Marcus, Jan 25 2021

Extensions

Wrong Formula and data corrected by Michel Marcus, Jan 25 2021

A118876 Determinant of n-th continuous block of 16 consecutive squares of primes.

Original entry on oeis.org

768280320, -1010949120, -4719098880, -1791590400, 24298444800, -19462947840, -109685145600, -3192514560, 144441833472, -198529367040, 15778022400, 159125783040, 861983659008, 1193361776640, 1359501373440, 5328357672960
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2006

Keywords

Comments

Quadratic analog of A118799 Determinants of 4 X 4 matrices of continuous blocks of 16 consecutive primes. See also: A001248 Squares of primes. The terminology "continuous" is used to distinguish from "discrete" which would be block 1: 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809; block 2: 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161; and so forth.

Examples

			a(1) = 768280320 =
|...4.....9...25....49.|
|.121...169..289...361.|
|.529...841..961..1369.|
|1681..1849.2209..2809.|.
		

Crossrefs

Showing 1-10 of 10 results.