cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117569 Expansion of (1+x+x^2)/(1+x^2).

Original entry on oeis.org

1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Row sums of A117568.

Examples

			1 + x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1+x^2),{x,0,120}],x] (* or *) LinearRecurrence[{0,-1},{1,1,0},120] (* or *) PadRight[{1},120,{0,1,0,-1}] (* Harvey P. Dale, Dec 12 2016 *)
  • PARI
    a(n) = (n==0) + [0, 1, 0, -1][n%4 + 1] /* Michael Somos, Aug 04 2009 */
    
  • PARI
    a(n) = (n==0) + kronecker( -4, n) /* Michael Somos, Aug 04 2009 */

Formula

G.f.: (1-x^3)/((1-x)(1+x^2)); a(n)=0^n+(1-(-1)^n)(cos(pi*n/2)+sin(pi*n/2))/2;
a(n) = A101455(n), n>0. - R. J. Mathar, Aug 10 2008
Expansion of (1 - x^2) * (1 - x^3) / ((1 - x) * (1 - x^4)) in powers of x.
G.f.: 1 / (1 - x / (1 + x / (1 - x / (1 + x)))). - Michael Somos, Apr 02 2012
Euler transform of length 4 sequence [ 1, -1, -1, 1]. - Michael Somos, Aug 04 2009
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v - u * (2 - u) * (2*v - 1).
a(n) is completely multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4).
a(2*n) = 0 unless n=0, a(4*n + 3) = -1, a(4*n + 1) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+2) = -a(n) unless n=0 or n=-2.
a(n) = -A163805(n) unless n=0. a(n) = (-1)^n * A163805(n). Convolution inverse of A163804.
E.g.f.: 1 + sin(x). - Arkadiusz Wesolowski, Aug 13 2012
a(n) = floor(1/(n+1)) + (1-(-1)^n)/2*(-1)^((n-1)/2). - Tani Akinari, Nov 09 2012

A117567 Riordan array ((1+x^2)/(1-x^3),x).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Sequence array for the sequence F(L((n+2)/3)).

Examples

			Triangle begins:
n\k|  0  1  2  3  4  5  6  7  8  9
---+--------------------------------
0  |  1,
1  |  0, 1,
2  |  1, 0, 1,
3  |  1, 1, 0, 1,
4  |  0, 1, 1, 0, 1,
5  |  1, 0, 1, 1, 0, 1,
6  |  1, 1, 0, 1, 1, 0, 1,
7  |  0, 1, 1, 0, 1, 1, 0, 1,
8  |  1, 0, 1, 1, 0, 1, 1, 0, 1,
9  |  1, 1, 0, 1, 1, 0, 1, 1, 0, 1
etc. Row and column numbering added by _Antti Karttunen_, Jan 19 2025
		

References

  • Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.

Crossrefs

Row sums are A093878. Diagonal sums are A051275. Inverse is A117568.

Programs

  • PARI
    up_to = 119;
    A117567tr0(n,k) = abs(kronecker((n-k+2), 3)); \\ We could also use fibonacci instead of abs
    A117567list(up_to) = { my(v = vector(1+up_to), i=0); for(n=0,oo, for(k=0,n, i++; if(i > 1+up_to, return(v)); v[i] = A117567tr0(n,k))); (v); };
    v117567 = A117567list(up_to);
    A117567(n) = v117567[1+n]; \\ Antti Karttunen, Jan 19 2025

Formula

Number triangle T(n,k) = F(L((n-k+2)/3))[k<=n] where L(j/p) is the Legendre symbol of j and p.
In the above, I assume that F stands for Fibonacci sequence (A000045), which in domain {-1, 0, 1} reduces to taking the absolute value of the argument. - Antti Karttunen, Jan 19 2025

Extensions

Data section extended up to a(119) [15 rows of triangle] by Antti Karttunen, Jan 19 2025
Showing 1-2 of 2 results.