cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056241 Triangle T(n,k) = number of k-part order-consecutive partitions of n (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 19, 10, 1, 1, 15, 45, 45, 15, 1, 1, 21, 90, 141, 90, 21, 1, 1, 28, 161, 357, 357, 161, 28, 1, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55
Offset: 1

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Comments

Forms the even-indexed trinomial coefficients (A027907). Matrix inverse is A104027. - Paul D. Hanna, Feb 26 2005
Subtriangle (for 1<=k<=n) of triangle defined by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2006

Examples

			Triangle begins:
  1;
  1,1;
  1,3,1;
  1,6,6,1;
  1,10,19,10,1;
  ...
Triangle (0, 1, 0, 1, 0, 0, 0...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3, 1;
  0, 1, 6, 6, 1;
  0, 1, 10, 19, 10, 1;
  0, 1, 15, 45, 45, 15, 1;
  0, 1, 21, 90, 141, 90, 21, 1;
  ... - _Philippe Deléham_, Mar 27 2014
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Oct 11 2011, after Paul Barry *)
  • PARI
    T(n,k)=if(nPaul D. Hanna

Formula

T(n, k) = Sum_{j=0..k-1} C(n-1, 2k-j-2)*C(2k-j-2, j).
G.f.: A(x, y) = (1 - x*(1+y))/(1 - 2*x*(1+y) + x^2*(1+y+y^2)) (offset=0). - Paul D. Hanna, Feb 26 2005
Sum_{k, 1<=k<=n}T(n,k)=A124302(n). Sum_{k, 1<=k<=n}(-1)^(n-k)*T(n,k)=A117569(n). - Philippe Deléham, Oct 29 2006
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy)).
E.g.f.: exp((1+y)x)*cosh(sqrt(y)*x).
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j)). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,1) = T(2,1) = T(2,2) = 1, T(n,k) = 0 if k<1 or if k>n. - Philippe Deléham, Mar 27 2014

Extensions

More terms from James Sellers, Aug 25 2000
More terms from Paul D. Hanna, Feb 26 2005

A163805 Expansion of (1 - x) * (1 - x^6) / ((1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Aug 04 2009

Keywords

Examples

			G.f. = 1 - x + x^3 - x^5 + x^7 - x^9 + x^11 - x^13 + x^15 - x^17 + x^19 + ...
		

Crossrefs

Programs

  • Maple
    1, seq(sin(3*n*Pi/2), n=1..100); # Ridouane Oudra, Nov 18 2024
  • Mathematica
    a[ n_] := Boole[n == 0] + {-1, 0, 1, 0}[[Mod[n, 4, 1]]]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = (n==0) + [0, -1, 0, 1][n%4 + 1]};
    
  • PARI
    {a(n) = (n==0) - kronecker(-4, n)};

Formula

Euler transform of length 6 sequence [ -1, 0, 1, 1, 0, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 - v) - u * (2 - u) * (3 - 2*v).
a(2*n) = 0 unless n=0, a(4*n + 1) = -1, a(4*n + 3) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+4) = a(n) unless n=0 or n=-4.
a(n) = - A117569(n) unless n=0. a(n) = (-1)^n * A117569(n).
Convolution inverse of A163806.
G.f.: (1 - x + x^2) / (1 + x^2).
G.f. A(x) = 1 - x / (1 + x^2) = 1 / (1 + x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Jan 03 2013
a(n) = A101455(n-2) = A056594(n-3), n>2. - R. J. Mathar, Aug 06 2009
E.g.f.: 1 - sin(x). - Stefano Spezia, Nov 16 2024
a(n) = sin(3*n*Pi/2), for n>0. - Ridouane Oudra, Nov 18 2024

A117568 Riordan array ((1-x^3)/(1+x^2),x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, -1, -1, 0, 1, -1, 1, 1, -1, -1, 0, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Inverse of number triangle A117567. Row sums are A117569. Diagonal sums are A102560.

Examples

			Triangle begins
1,
0, 1,
-1, 0, 1,
-1, -1, 0, 1,
1, -1, -1, 0, 1,
1, 1, -1, -1, 0, 1,
-1, 1, 1, -1, -1, 0, 1,
-1, -1, 1, 1, -1, -1, 0, 1,
1, -1, -1, 1, 1, -1, -1, 0, 1
		

A122935 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2006

Keywords

Comments

Subtriangle (1 <= k <= n) is in A056241.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,   1;
  0, 1,  6,   6,    1;
  0, 1, 10,  19,   10,    1;
  0, 1, 15,  45,   45,   15,    1;
  0, 1, 21,  90,  141,   90,   21,    1;
  0, 1, 28, 161,  357,  357,  161,   28,    1;
  0, 1, 36, 266,  784, 1107,  784,  255,   36,   1;
  0, 1, 45, 414, 1554, 2907, 2907, 1554,  414,  45,  1;
  0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
		

Crossrefs

Formula

T(2*k-1,k) = A082758(k-1)for k >= 1.
Sum_{k=0..n} T(n,k) = A124302(n); see also A007051.
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = A117569(n).
G.f.: (1-x*(y+2)+x^2)/(1-2x*(1+y)+(1+y+y^2)*x^2). - Philippe Deléham, Oct 30 2011

A344566 T(n, k) = (-1)^(n - k)*binomial(n - 1, k - 1)*hypergeom([-(n - k)/2, -(n - k - 1)/2], [1 - n], 4). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 1, 1, -3, 1, 0, -1, 2, 3, -4, 1, 0, 0, -4, 2, 6, -5, 1, 0, 1, 2, -9, 0, 10, -6, 1, 0, -1, 3, 9, -15, -5, 15, -7, 1, 0, 0, -6, 3, 24, -20, -14, 21, -8, 1, 0, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1
Offset: 0

Views

Author

Peter Luschny, May 23 2021

Keywords

Comments

The inverse of the Riordan array for directed animals A122896. Without the first column (1, 0, 0, ...) the inverse of the Motzkin triangle A064189.

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0, -1,  1;
[3] 0,  0, -2,  1;
[4] 0,  1,  1, -3,   1;
[5] 0, -1,  2,  3,  -4,   1;
[6] 0,  0, -4,  2,   6,  -5,   1;
[7] 0,  1,  2, -9,   0,  10,  -6, 1;
[8] 0, -1,  3,  9, -15,  -5,  15, -7,  1;
[9] 0,  0, -6,  3,  24, -20, -14, 21, -8, 1.
		

Crossrefs

A117569 (row sums).

Programs

  • Maple
    T := (n,k) -> (-1)^(n-k)*binomial(n-1,k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], 4): seq(seq(simplify(T(n, k)), k=0..n), n = 0..10);
  • SageMath
    # uses[riordan_array from A256893]
    riordan_array(1, x / (1 + x + x^2), 10)

Formula

Riordan_array (1, x / (1 + x + x^2)).
Showing 1-5 of 5 results.