cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000740 Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.

Original entry on oeis.org

1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, 8127, 16365, 32640, 65535, 130788, 262143, 523770, 1048509, 2096127, 4194303, 8386440, 16777200, 33550335, 67108608, 134209530, 268435455, 536854005, 1073741823, 2147450880
Offset: 1

Views

Author

Keywords

Comments

Also number of compositions of n into relatively prime parts (that is, the gcd of all the parts is 1). Also number of subsets of {1,2,..,n} containing n and consisting of relatively prime numbers. - Vladeta Jovovic, Aug 13 2003
Also number of perfect parity patterns that have exactly n columns (see A118141). - Don Knuth, May 11 2006
a(n) is odd if and only if n is squarefree (Tim Keller). - Emeric Deutsch, Apr 27 2007
a(n) is a multiple of 3 for all n>=3 (see Problem 11161 link). - Emeric Deutsch, Aug 13 2008
Row sums of triangle A143424. - Gary W. Adamson, Aug 14 2008
a(n) is the number of monic irreducible polynomials with nonzero constant coefficient in GF(2)[x] of degree n. - Michel Marcus, Oct 30 2016
a(n) is the number of aperiodic compositions of n, the number of compositions of n with relatively prime parts, and the number of compositions of n with relatively prime run-lengths. - Gus Wiseman, Dec 21 2017

Examples

			For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>.
From _Gus Wiseman_, Dec 19 2017: (Start)
The a(6) = 27 aperiodic compositions are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
The a(6) = 27 compositions into relatively prime parts are:
  (111111),
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1212), (1221), (1311), (2112), (2121), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (51).
The a(6) = 27 compositions with relatively prime run-lengths are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1131), (1212), (1221), (1311), (2112), (2121), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
(End)
		

References

  • H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A027375/2.
See A056278 for a variant.
First differences of A085945.
Column k=2 of A143325.
Row sums of A101391.

Programs

  • Maple
    with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]],j=2..tau(n)) od: seq(a[n],n=1..32); # Emeric Deutsch, Apr 27 2007
    with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # N. J. A. Sloane, Oct 18 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 03 2012, after PARI *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n/d)*2^(d-1))
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum([mobius(n // d) * 2**(d - 1) for d in divisors(n)])
    [a(n) for n in range(1, 101)]  # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(n/d)*2^(d-1), Mobius transform of A011782. Furthermore, Sum_{d|n} a(d) = 2^(n-1).
a(n) = A027375(n)/2 = A038199(n)/2.
a(n) = Sum_{k=0..n} A051168(n,k)*k. - Max Alekseyev, Apr 09 2013
Recurrence relation: a(n) = 2^(n-1) - Sum_{d|n,d>1} a(n/d). (Lafayette College Problem Group; see the Maple program and Iglesias eq (6)). - Emeric Deutsch, Apr 27 2007
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Oct 24 2018
G.f. satisfies Sum_{n>=1} A( (x/(1 + 2*x))^n ) = x. - Paul D. Hanna, Apr 02 2025

Extensions

Connection with Mandelbrot set discovered by Warren D. Smith and proved by Robert Munafo, Feb 06 2000
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012

A117870 Square board sizes for which the lights out problem does not have a unique solution (counting solutions differing only by rotation and reflection as distinct).

Original entry on oeis.org

4, 5, 9, 11, 14, 16, 17, 19, 23, 24, 29, 30, 32, 33, 34, 35, 39, 41, 44, 47, 49, 50, 53, 54, 59, 61, 62, 64, 65, 67, 69, 71, 74, 77, 79, 83, 84, 89, 92, 94, 95, 98, 99, 101, 104, 107, 109, 113, 114, 118, 119, 123, 124, 125, 126, 128, 129, 131, 134, 135, 137, 139, 143
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2006

Keywords

Comments

Numbers k such that a k X k parity pattern exists (see A118141). - Don Knuth, May 11 2006

Crossrefs

Cf. A075462, A076437, A117872. Complement of A076436.

Formula

a(n) = A093614(n) - 1.
Contains positive integers k such that A159257(k) > 0. - Max Alekseyev, Sep 17 2009

Extensions

More terms from Max Alekseyev, Sep 17 2009, and Thomas Buchholz, May 16 2014

A118142 Numbers n such that a perfect n X n parity pattern exists.

Original entry on oeis.org

4, 5, 9, 11, 16, 19, 23, 29, 30, 32, 33, 39, 47, 59, 61, 62, 64, 65, 67, 79, 84, 95, 101, 119, 123, 125, 126, 128, 129, 131, 135, 154, 159, 164, 169, 170, 185, 191, 203, 204, 239, 247, 251, 253, 254, 256, 257, 259
Offset: 1

Views

Author

Don Knuth, May 11 2006

Keywords

Comments

See A118141 for definitions and references.

Crossrefs

A subsequence of A117870.

A118143 Numbers n for which there exists a perfect n X n parity pattern with 8-fold symmetry.

Original entry on oeis.org

4, 5, 11, 16, 23, 29, 30, 32, 47, 59, 62, 64, 65, 84, 95, 101, 119, 125, 126, 128, 131, 154, 164, 170, 185, 191, 203, 204, 239, 251, 254, 256, 257
Offset: 1

Views

Author

Don Knuth, May 11 2006

Keywords

Comments

See A118141 for definitions and references.
If an odd number m appears then so does 2m+1.

Crossrefs

Cf. A118141.

A118670 Length of the shortest perfect modular pattern of type PMP(3,0) of n columns whose first row is 0...01 (with n-1 zeros).

Original entry on oeis.org

2, 5, 14, 19, 17, 181, 119, 17, 2459, 121, 89, 181, 545, 59
Offset: 1

Views

Author

John W. Layman, May 19 2006

Keywords

Comments

A modular pattern of type PMP(m,r) is a matrix of integers in the range 0 to (r-1) with the property that the sum of any element and its four adjacent elements is congruent to r (modulo m). The pattern is called perfect if no row or column is entirely zero. This generalizes the concept of perfect parity pattern introduced by D. E. Knuth in A118141. a(15) is greater than 4800.

Examples

			For 2 columns (n=2), if we start with the first row 0 1, it is found that successive additional rows such that the currently last row satisfies the PMP(3,0) condition
are uniquely determined. This leads, after several steps, to
0 1
2 2
2 1
1 1
2 0
Since, for the first time, the last (5th) row also satisfies the condition, we have found that the shortest PMP(3,0) matrix of 2 columns has 5 rows and thus a(2)=5.
		

Crossrefs

Cf. A118141.
Showing 1-5 of 5 results.