cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A269993 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 9, 74, 8098, 101114070, 10080916639334518, 234737156891222571756748160861129, 104728182461244680288139397973895577148266725366426255244889745185
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
Guide to related sequences:
r(k) x denominators
1 sqrt(1/2) A069139
1 sqrt(1/3) A144983
1 sqrt(2) - 1 A006487
1 sqrt(3) - 1 A118325
1 tau - 1 A117116
1 1/Pi A006524
1 Pi-3 A001466
1 1/e A006526
1 e - 2 A006525
1 log(2) A118324
1 Euler constant A110820
1 (1/2)^(1/3) A269573
.
1/k sqrt(1/2) A269993
1/k sqrt(1/3) A269994
1/k sqrt(2) - 1 A269995
1/k sqrt(3) - 1 A269996
1/k tau - 1 A269997
1/k 1/Pi A269998
1/k Pi-3 A269999
1/k 1/e A270001
1/k e - 2 A270002
1/k log(2) A270314
1/k Euler constant A270315
1/k (1/2)^(1/3) A270316
.
Using the 12 choices for x shown above (that is, sqrt(1/2) to (1/2)^(1/3)), the denominator sequence of the r-Egyptian fraction for x appears for each of the following sequences (r(k)):
r(k) = 1 (see above)
r(k) = 1/k (see above)
r(k) = 2^(1-k): A270347-A270358
r(k) = 1/Fibonacci(k+1): A270394-A270405
r(k) = 1/prime(k): A270476-A270487
r(k) = 1/k!: A270517-A270527 (A000027 for x = e - 2)
r(k) = 1/(2k-1): A270546-A270557
r(k) = 1/(k+1): A270580-A270591

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = sqrt(1/2);
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 10, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code

A144835 Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).

Original entry on oeis.org

2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Examples

			1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
  • PARI
    x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013

A144984 Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).

Original entry on oeis.org

3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A145003 Denominators of an Egyptian fraction for 1/sqrt(29) = 0.185695338... (A020786).

Original entry on oeis.org

6, 53, 6221, 891830563, 950677235679298964, 2245647960428048728674383451656707058, 11636905679093503238901947768600244923435901955366623291532461461126244496
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[29], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A195697 First denominator and then numerator in a fraction expansion of log(2) - Pi/8.

Original entry on oeis.org

2, 1, 3, -1, 12, 1, 30, 1, 35, -1, 56, 1, 90, 1, 99, -1, 132, 1, 182, 1, 195, -1, 240, 1, 306, 1, 323, -1, 380, 1, 462, 1, 483, -1, 552, 1, 650, 1, 675, -1, 756, 1, 870, 1, 899, -1, 992, 1, 1122, 1, 1155, -1, 1260
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 25 2011

Keywords

Comments

The minus sign in front of a fraction is considered the sign of the numerator.

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+x^2-2*x^3+9*x^4+2*x^5+14*x^6-2*x^7+3*x^8+2*x^9+3*x^10-2*x^11+x^13) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - Colin Barker, Dec 17 2015

A195909 First numerator and then denominator in a fraction expansion of log(2) - Pi/8.

Original entry on oeis.org

1, 2, -1, 3, 1, 12, 1, 30, -1, 35, 1, 56, 1, 90, -1, 99, 1, 132, 1, 182, -1, 195, 1, 240, 1, 306, -1, 323, 1, 380, 1, 462, -1, 483, 1, 552, 1, 650, -1, 675, 1, 756, 1, 870, -1, 899, 1, 992, 1, 1122, -1, 1155, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 26 2011

Keywords

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(1+2*x-2*x^2+x^3+2*x^4+9*x^5-2*x^6+14*x^7+2*x^8+3*x^9-2*x^10+3*x^11+x^12) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - Colin Barker, Dec 17 2015

A195913 The denominator in a fraction expansion of log(2)-Pi/8.

Original entry on oeis.org

2, 3, 12, 30, 35, 56, 90, 99, 132, 182, 195, 240, 306, 323, 380, 462, 483, 552, 650, 675, 756, 870, 899, 992, 1122, 1155, 1260, 1406, 1443, 1560, 1722, 1763, 1892, 2070, 2115, 2256, 2450, 2499, 2652, 2862, 2915
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 25 2011

Keywords

Comments

The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence.

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ...] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+9*x^2+14*x^3+3*x^4+3*x^5) / ((1-x)^3*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
From Bernard Schott, Aug 11 2019: (Start)
k >= 1, a(3*k) = (4*k-1) * 4*k,
k >= 0, a(3*k+1) = (4*k+1) * (4*k+2),
k >= 0, a(3*k+2) = (4*k+1) * (4*k+3).
The even terms a(3*k) and a(3*k+1) come from log(2) and the odd terms a(3*k+2) come from - Pi/8. (End)

A144983 Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).

Original entry on oeis.org

2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A142725 Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...

Original entry on oeis.org

5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A142726 Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...

Original entry on oeis.org

5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
Showing 1-10 of 29 results. Next