cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019675 Decimal expansion of Pi/8.

Original entry on oeis.org

3, 9, 2, 6, 9, 9, 0, 8, 1, 6, 9, 8, 7, 2, 4, 1, 5, 4, 8, 0, 7, 8, 3, 0, 4, 2, 2, 9, 0, 9, 9, 3, 7, 8, 6, 0, 5, 2, 4, 6, 4, 6, 1, 7, 4, 9, 2, 1, 8, 8, 8, 2, 2, 7, 6, 2, 1, 8, 6, 8, 0, 7, 4, 0, 3, 8, 4, 7, 7, 0, 5, 0, 7, 8, 5, 7, 7, 6, 1, 2, 4, 8, 2, 8, 5, 0, 4, 3, 5, 3, 1, 6, 7, 7, 6, 4, 6, 3, 3
Offset: 0

Views

Author

Keywords

Comments

Equals Integral_{x>=0} sin(4*x)/(4*x) dx. - Jean-François Alcover, Feb 28 2013
Consider 4 circles inscribed in a square. Inscribe a square in each circle. And finally, inscribe 4 circles inside each four small squares. Totally we get 16 small circles. Pi/8 is the ratio of the area of the 16 small circles to the area of initial square. See the link. - Kirill Ustyantsev, Apr 30 2020

Examples

			Pi/8 = 0.392699081698724154807830422909937860524646174921888227621868... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)/8))); // Vincenzo Librandi, Oct 07 2015
  • Mathematica
    RealDigits[N[Pi/8,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 1002);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+2)))), "3..-2"))  \\ Gheorghe Coserea, Oct 06 2015
    

Formula

From Peter Bala, Nov 15 2016: (Start)
Pi/8 = Sum_{k >= 1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)).
More generally, for n >= 0 we have 1/(2*n)! * Pi/4 = Sum_{k >= 1} (-1)^(k+n-1) * 1/Product_{j = -n..n} (2*k + 2*j - 1): when n = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For N divisible by 4, we have the asymptotic expansion Pi/8 - Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) ~ -1/2*(1/N^3 - 2/N^5 + 31/N^7 - 692/N^9 + ...), where the sequence of unsigned coefficients [1, 2, 31, 692, ...] equals A024235. (End)
Equals Integral_{x = 0..1} x*sqrt(1 - x^4) dx. - Peter Bala, Oct 27 2019
Equals Integral_{x = 0..oo} sin(x)^6/x^4 dx = Sum_{n >= 1} sin(n)^6/n^4, by the Abel-Plana formula. - Peter Bala, Nov 04 2019
From Amiram Eldar, Jul 12 2020: (Start)
Equals arctan(sqrt(2) - 1).
Equals Sum_{k>=0} (-1)^k/(4*k+2).
Equals Sum_{k>=0} 1/((4*k+1)*(4*k+3)) = Sum_{k>=0} 1/A001539(k).
Equals Integral_{x=0..oo} dx/(x^2 + 16).
Equals Integral_{x=0..oo} dx/(x^4 + 4) = Integral_{x=0..oo} x/(x^4 + 4) dx.
Equals Integral_{x=0..oo} x/(x^4 + 1)^2 dx = Integral_{x=0..1} x/(x^4 + 1) dx.
Equals Integral_{x=0..1} x * arcsin(x) dx. (End)
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals Integral_{x=0..oo} (x*log(x + 1))/((x^2 + 1)^2) dx.
Equals Integral_{x=0..oo} (x^3 - 3*x + 3*arctan(x))/(3*x^5) dx. (End)

A016655 Decimal expansion of log(32) = 5*log(2).

Original entry on oeis.org

3, 4, 6, 5, 7, 3, 5, 9, 0, 2, 7, 9, 9, 7, 2, 6, 5, 4, 7, 0, 8, 6, 1, 6, 0, 6, 0, 7, 2, 9, 0, 8, 8, 2, 8, 4, 0, 3, 7, 7, 5, 0, 0, 6, 7, 1, 8, 0, 1, 2, 7, 6, 2, 7, 0, 6, 0, 3, 4, 0, 0, 0, 4, 7, 4, 6, 6, 9, 6, 8, 1, 0, 9, 8, 4, 8, 4, 7, 3, 5, 7, 8, 0, 2, 9, 3, 1, 6, 6, 3, 4, 9, 8, 2, 0, 9, 3, 4, 3
Offset: 1

Views

Author

Keywords

Comments

The function exp(x) has its maximum curvature where x = -(1/10)*5*log(2) = -log(2)/2 = 0.34657... - Dimitri Papadopoulos, Oct 27 2022
This maximum curvature occurs at the point with coordinates (x_M = -log(2)/2 = -(this constant)/10; y_M = sqrt(2)/2 = A010503) and is equal to 2*sqrt(3)/9 = A212886. - Bernard Schott, Dec 23 2022

Examples

			3.465735902799726547086160607290882840377500671801276270603400047466968...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A000045, A000032, A060851, A195909, A195913, A195697, A016460 (continued fraction).

Programs

Formula

log(2)/2 = (1 - 1/2 - 1/4) + (1/3 - 1/6 - 1/8) + (1/5 - 1/10 - 1/12) + ... [Jolley, Summation of Series, Dover (1961) eq (73)]
Equals 10*log(2)/2 = 5*log(2) = 5*A002162, so 10*(1/2 - 1/4 + 1/6 - 1/8 + 1/10 - ... + (-1)^(k+1)/(2*k) + ...) = log(32). - Eric Desbiaux, Nov 26 2008
-log(2)/2 = lim_{n->oo} ((Sum_{k=2..n} arctanh(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals log(sqrt(2)) with offset 0. - Michel Marcus, Feb 19 2017
Equals (5/4)*Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
From Amiram Eldar, Jun 29 2020: (Start)
log(2)/2 = arctanh(1/3) = arcsinh(1/sqrt(8)).
log(2)/2 = Integral_{x=0..Pi/4} tan(x) dx.
log(2)/2 = Sum_{k>=0} (-1)^k/(2*k+2).
log(2)/2 = Sum_{k>=1} 1/A060851(k). (End)
log(2)/2 = Sum_{k>=1} (-1)^(k+1) * arctanh(Lucas(2*k+3)/Fibonacci(2*k+3)^2) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
Equals 10 * Integral_{1..oo} dx/(x*(1+x^2)). [Nahin] - R. J. Mathar, May 22 2024
Equals -10*Integral_{q=0..1} q*log(sin(Pi*q))dq. [Espinosa] - R. J. Mathar, Aug 13 2024
log(2)/2 = Sum_{k>=2} (-1)^(k) * arccoth(k). - Antonio Graciá Llorente, Sep 16 2024
-0.34657359... = Sum_{k>=0} zeta(2k)/((2k+1)*2^(2k)), [Srivastava (2.20)] - R. J. Mathar, Feb 12 2020
Equals 10*Integral_{x=0..1} Ei((1 + sqrt(2))*log(x)) - li(x) dx, where Ei is the exponential integral and li is the logarithmic integral. - Kritsada Moomuang, Jun 06 2025

A195909 First numerator and then denominator in a fraction expansion of log(2) - Pi/8.

Original entry on oeis.org

1, 2, -1, 3, 1, 12, 1, 30, -1, 35, 1, 56, 1, 90, -1, 99, 1, 132, 1, 182, -1, 195, 1, 240, 1, 306, -1, 323, 1, 380, 1, 462, -1, 483, 1, 552, 1, 650, -1, 675, 1, 756, 1, 870, -1, 899, 1, 992, 1, 1122, -1, 1155, 1
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 26 2011

Keywords

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(1+2*x-2*x^2+x^3+2*x^4+9*x^5-2*x^6+14*x^7+2*x^8+3*x^9-2*x^10+3*x^11+x^12) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - Colin Barker, Dec 17 2015

A195913 The denominator in a fraction expansion of log(2)-Pi/8.

Original entry on oeis.org

2, 3, 12, 30, 35, 56, 90, 99, 132, 182, 195, 240, 306, 323, 380, 462, 483, 552, 650, 675, 756, 870, 899, 992, 1122, 1155, 1260, 1406, 1443, 1560, 1722, 1763, 1892, 2070, 2115, 2256, 2450, 2499, 2652, 2862, 2915
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 25 2011

Keywords

Comments

The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence.

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ...] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+9*x^2+14*x^3+3*x^4+3*x^5) / ((1-x)^3*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
From Bernard Schott, Aug 11 2019: (Start)
k >= 1, a(3*k) = (4*k-1) * 4*k,
k >= 0, a(3*k+1) = (4*k+1) * (4*k+2),
k >= 0, a(3*k+2) = (4*k+1) * (4*k+3).
The even terms a(3*k) and a(3*k+1) come from log(2) and the odd terms a(3*k+2) come from - Pi/8. (End)

A161685 Continued fraction for (3*Pi)/8.

Original entry on oeis.org

1, 5, 1, 1, 1, 1, 2, 12, 12, 6, 1, 1, 1, 1, 11, 1, 4, 1, 3, 2, 1, 6, 1, 4, 4, 3, 3, 4, 10, 1, 4, 37, 1, 1, 20, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 2, 2, 15, 2, 1, 2, 2, 1, 1, 1, 3, 1, 4, 3, 83, 9, 19, 1, 2, 2, 4, 1, 1, 1, 4, 3, 4, 1, 1, 8, 2, 1, 2, 1, 7, 3, 2, 1, 1, 5, 1, 6, 1, 5, 1, 7, 17, 9, 6, 3, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Harry J. Smith, Jun 18 2009

Keywords

Examples

			1.178097245096172464423491268... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + ...))))
		

Crossrefs

Cf. A093828 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); R:= RealField(); ContinuedFraction(3*Pi(R)/8); // G. C. Greubel, Aug 11 2019
    
  • Maple
    convert(3*Pi/8, confrac, 105); # G. C. Greubel, Aug 11 2019
  • Mathematica
    ContinuedFraction[(3*Pi)/8,120] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(3*Pi/8); for (n=0, 20000, write("b161685.txt", n, " ", x[n+1])); }
    
  • Sage
    continued_fraction_list(3*pi/8, nterms=105) # G. C. Greubel, Aug 11 2019

A164833 Decimal expansion of Pi/8 - log(2)/2.

Original entry on oeis.org

0, 4, 6, 1, 2, 5, 4, 9, 1, 4, 1, 8, 7, 5, 1, 5, 0, 0, 0, 9, 9, 2, 1, 4, 3, 6, 2, 1, 8, 0, 8, 4, 9, 5, 7, 6, 4, 8, 6, 8, 9, 6, 1, 0, 7, 7, 4, 1, 7, 6, 0, 6, 0, 0, 5, 6, 1, 5, 2, 8, 0, 6, 9, 2, 9, 1, 7, 8, 0, 2, 3, 9, 8, 0, 0, 9, 2, 8, 7, 6, 7, 0, 2, 5, 5, 7, 2, 6, 8, 9, 6, 6, 9, 5, 5, 5, 2, 8, 9, 7, 2, 6, 7, 6, 7, 7, 7, 0, 3, 0, 3, 8, 7, 4, 9, 4, 5, 4, 6
Offset: 0

Views

Author

Jonathan Vos Post, Aug 27 2009

Keywords

Comments

Digits and formula given at Waldschmidt, p. 4.

Examples

			0.0461254914187515000992143621808495764868961077417606...
1/(2*3*4) + 1/(6*7*8) + 1/(10*11*12) + 1/(14*15*16) + ... [_Bruno Berselli_, Mar 17 2014]
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 46 (series n. 251).
  • A. J. Van Der Poorten, Effectively computable bounds for the solutions of certain Diophantine equations, Acta Arith., 33 (1977), pp. 195-207.

Crossrefs

Cf. A239362: Sum_{k>=1} 1/((3k-2)*(3k-1)*(3k)).

Programs

  • Magma
    SetDefaultRealField(RealField(130)); R:= RealField(); (Pi(R)-4*Log(2))/8; // G. C. Greubel, Aug 11 2019
    
  • Maple
    evalf[130]((Pi - 4*log(2))/8 ); # G. C. Greubel, Aug 11 2019
  • Mathematica
    Join[{0},RealDigits[Pi/8-Log[2]/2,10,120][[1]]] (* Harvey P. Dale, Nov 13 2012 *)
  • PARI
    default(realprecision, 130); (Pi - 4*log(2))/8 \\ G. C. Greubel, Aug 11 2019
    
  • Sage
    numerical_approx((pi-4*log(2))/8, digits=130) # G. C. Greubel, Aug 11 2019

Formula

Equals Sum_{n>=0} Sum_{m>=0} 1/((4*n+3)^(2*m+1)).
Equals Sum_{k>=1} 1/( (4*k-2)*(4*k-1)*(4*k) ). - Bruno Berselli, Mar 17 2014

Extensions

Normalized offset and leading zeros - R. J. Mathar, Sep 27 2009
Showing 1-6 of 6 results.