A118395 Expansion of e.g.f. exp(x + x^3).
1, 1, 1, 7, 25, 61, 481, 2731, 10417, 91225, 681121, 3493711, 33597961, 303321877, 1938378625, 20282865331, 211375647841, 1607008257841, 18157826367937, 212200671085975, 1860991143630841, 22560913203079021, 289933758771407521, 2869267483843753147, 37116733726117707025
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..533
Programs
-
Magma
[n le 3 select 1 else Self(n-1) + 3*(n-2)*(n-3)*Self(n-3): n in [1..26]]; // Vincenzo Librandi, Aug 25 2015
-
Maple
with(combstruct):seq(count(([S, {S=Set(Union(Z, Prod(Z, Z, Z)))}, labeled], size=n)), n=0..22); # Zerinvary Lajos, Mar 18 2008
-
Mathematica
CoefficientList[Series[E^(x+x^3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *) T[n_, k_] := n!/(k!(n-3k)!); a[n_] := Sum[T[n, k], {k, 0, Floor[n/3]}]; a /@ Range[0, 24] (* Jean-François Alcover, Nov 04 2020 *)
-
PARI
a(n)=n!*polcoeff(exp(x+x^3+x*O(x^n)),n)
-
PARI
N=33; x='x+O('x^N); egf=exp(x+x^3); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */
-
PARI
a(n) = n!*sum(k=0, n\3, binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
-
Sage
def a(n): if (n<3): return 1 else: return a(n-1) + 3*(n-1)*(n-2)*a(n-3) [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
Formula
E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + (1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1) )), recursively defined continued fraction. - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 3^(n/3-1/2) * n^(2*n/3) * exp((n/3)^(1/3)-2*n/3). - Vaclav Kotesovec, Jun 02 2013
E.g.f.: A(x) = exp(x+x^3) satisfies A' - (1+3*x^2)*A = 0. - Gheorghe Coserea, Aug 24 2015
a(n+1) = a(n) + 3*n*(n-1)*a(n-2). - Gheorghe Coserea, Aug 24 2015
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-2*k,k)/(n-2*k)!. - Seiichi Manyama, Feb 25 2022
Extensions
Missing a(0)=1 prepended by Joerg Arndt, Sep 15 2012
Comments