cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118589 Expansion of e.g.f. exp(x + x^2 + x^3).

Original entry on oeis.org

1, 1, 3, 13, 49, 261, 1531, 9073, 63393, 465769, 3566611, 29998101, 262167313, 2394499693, 23249961099, 233439305401, 2439472944961, 26649502709073, 300078056044963, 3498896317045789, 42244252226263281, 524289088799352661
Offset: 0

Views

Author

Paul D. Hanna, May 08 2006

Keywords

Comments

Equals row sums of triangle A118588.

Crossrefs

Cf. A118588 (triangle), A119013 (eigenvector).

Programs

  • Mathematica
    Range[0, 21]!*CoefficientList[ Series[ Exp[x*(1-x^3)/(1 - x)], {x, 0, 21}], x] (* Zerinvary Lajos, Mar 23 2007 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2+x^3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 17 2024 *)
  • Maxima
    a(n):=n!*sum(sum(binomial(j,n-3*k+2*j)*binomial(k,j),j,0,k)/k!,k,1,n); /* Vladimir Kruchinin, Sep 01 2010 */
  • PARI
    {a(n)=n!*polcoeff(exp(x+x^2+x^3 +x*O(x^n)),n,x)}
    

Formula

a(n) = n! * Sum_{k=1..n}(Sum_{j=0..k}(binomial(j,n-3*k+2*j)*binomial(k,j))/k!), n>0. - Vladimir Kruchinin, Sep 01 2010
Recurrence equation: a(n) = a(n-1) + 2*(n-1)*a(n-2) + 3*(n-1)*(n-2)*a(n-3) with initial conditions a(0) = a(1) = 1 and a(2) = 3. - Peter Bala, May 14 2012
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + (1+x+x^2)/(k+1)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
a(n) ~ 3^(n/3-1/2) * n^(2*n/3) * exp(7/9*(n/3)^(1/3) + (n/3)^(2/3) - 2*n/3 - 14/81) * (1 + 419/(4374*(n/3)^(1/3)) + 16229573/(191318760*(n/3)^(2/3))). - Vaclav Kotesovec, Oct 09 2013

A118588 Triangle generated by e.g.f.: A(x,y) = exp(x + y*(x^2+x^3)), read by rows of length [n/2+1].

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 36, 12, 1, 80, 180, 1, 150, 1260, 120, 1, 252, 5460, 3360, 1, 392, 17640, 43680, 1680, 1, 576, 46872, 342720, 75600, 1, 810, 108360, 1839600, 1587600, 30240, 1, 1100, 225720, 7539840, 20235600, 1995840, 1, 1452, 433620, 25391520
Offset: 0

Views

Author

Paul D. Hanna, May 08 2006

Keywords

Comments

E.g.f. V(x) of eigenvector A119013 satisfies: V(x) = exp(x)*V(x^2+x^3); note the similarity to e.g.f. of this triangle.

Examples

			Triangle begins:
1;
1;
1,2;
1,12;
1,36,12;
1,80,180;
1,150,1260,120;
1,252,5460,3360;
1,392,17640,43680,1680;
1,576,46872,342720,75600; ...
O.g.f. for columns:
0!/0!*(1)/(1-x);
2!/1!*(1+2*x)/(1-x)^4;
4!/2!*(1+8*x+21*x^2)/(1-x)^7;
6!/3!*(1+18*x+129*x^2+356*x^3)/(1-x)^10;
8!/4!*(1+32*x+438*x^2+2984*x^3+8425*x^4)/(1-x)^13; ...
		

Crossrefs

Cf. A118589 (row sums), A119013 (eigenvector).

Programs

  • PARI
    {T(n,k)=n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)),n,x),k,y)}
Showing 1-2 of 2 results.