cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A293669 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 1, 3, 13, 25, 1, 1, 1, 3, 13, 49, 81, 1, 1, 1, 3, 13, 73, 261, 331, 1, 1, 1, 3, 13, 73, 381, 1531, 1303, 1, 1, 1, 3, 13, 73, 501, 2611, 9073, 5937, 1, 1, 1, 3, 13, 73, 501, 3331, 19993, 63393, 26785, 1, 1, 1, 3, 13, 73, 501, 4051, 27553, 165873, 465769, 133651, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1, ...
   1,  1,   1,   1,   1, ...
   1,  3,   3,   3,   3, ...
   1,  7,  13,  13,  13, ...
   1, 25,  49,  73,  73, ...
   1, 81, 261, 381, 501, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A000262.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n, k)))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Nov 11 2020
  • Mathematica
    A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 1] := A[n, k] = (n-1)!*Sum[j*A[n-j, k]/(n-j)!, {j, 1, Min[k, n]}]; A[, ] = 0;
    Table[A[n, d-n+1], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j*A(n-j,k)/(n-j)!.

A294250 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} (1+x^j) - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 13, 1, 0, 1, 1, 3, 19, 49, 1, 0, 1, 1, 3, 19, 97, 261, 1, 0, 1, 1, 3, 19, 121, 681, 1531, 1, 0, 1, 1, 3, 19, 121, 921, 5971, 9073, 1, 0, 1, 1, 3, 19, 121, 1041, 8491, 50443, 63393, 1, 0, 1, 1, 3, 19, 121, 1041
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2017

Keywords

Examples

			Square array A(n,k) begins:
   1, 1,   1,   1,   1, ...
   0, 1,   1,   1,   1, ...
   0, 1,   3,   3,   3, ...
   0, 1,  13,  19,  19, ...
   0, 1,  49,  97, 121, ...
   0, 1, 261, 681, 921, ...
		

Crossrefs

Columns k=0..5 give A000007, A000012, A118589, A294251, A294252, A294253.
Rows n=0 gives A000012.
Main diagonal gives A293840.

Formula

B(j,k) is the coefficient of Product_{i=1..k} (1+x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(A000217(k),n)} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.

A193930 E.g.f.: exp(x+x^2+x^3+x^4).

Original entry on oeis.org

1, 1, 3, 13, 73, 381, 2611, 19993, 165873, 1436473, 14004451, 145099461, 1584090553, 18196817653, 223416271443, 2865429498961, 38330181602401, 535448870264433, 7823019065848003, 118402856414023933, 1856454825152993961, 30160691907215561581
Offset: 0

Views

Author

Vladimir Kruchinin, Aug 09 2011

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,3,13]; [n le 4 select I[n] else Self(n-1)+2*(n-2)*Self(n-2)+3*(n-2)*(n-3)*Self(n-3)+4*(n-2)*(n-3)*(n-4)*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Oct 12 2014
  • Maple
    A193930:=n->`if`(n=0,1,n!*add(add( (-1)^i*binomial(k,k-i)*binomial(n-4*i-1,k-1)/k!, i=0..(n-k)/4), k=1..n)): seq(A193930(n), n=0..20); # Wesley Ivan Hurt, Oct 11 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*j!, j=1..min(n, 4)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + 2 (n - 1) a[n - 2] + (n - 1) (n - 2) 3 a[n - 3] + (n - 1) (n - 2) (n - 3) 4 a[n - 4], a[0] == 1,
    a[1] == 1, a[2] == 3, a[3] == 13}, a, {n, 0, 20}] (* Geoffrey Critzer, Oct 11 2014 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2+x^3+x^4],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 20 2021 *)
  • Maxima
    a(n):=if n=0 then 1 else n!*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-4*i-1,k-1),i,0,(n-k)/4)/k!,k,1,n);
    
  • PARI
    x = y + O(y^50); concat(0, Vec(serlaplace(exp(x+x^2+x^3+x^4)))) \\ Michel Marcus, Oct 12 2014
    

Formula

a(n) = n!*sum(k=1..n, sum(i=0..(n-k)/4, (-1)^i*binomial(k,k-i)*binomial(n-4*i-1,k-1))/k!), n>0, a(0)=1.
a(n) = a(n-1) + 2*(n-1)*a(n-2) + 3*(n-1)(n-2)*a(n-3) + 4*(n-1)*(n-2)*(n-3)*a(n-4). - Geoffrey Critzer, Oct 11 2014

A334562 E.g.f.: exp(-(x + x^2 + x^3)).

Original entry on oeis.org

1, -1, -1, -1, 25, 19, -209, -2269, 2801, 68615, 371071, -2499641, -28306871, -58645861, 1964456495, 15133179179, -37119981599, -1861550428529, -9225044407169, 110317002942095, 2150185424201081, 3953685082287779, -233260896605772881, -2920858244957587661, 7649165533910291665
Offset: 0

Views

Author

Seiichi Manyama, May 06 2020

Keywords

Crossrefs

Column 3 of A334561.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-(x+x^2+x^3)],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Nov 26 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(-x-x^2-x^3)))

Formula

a(0) = 1 and a(n) = - (n-1)! * Sum_{k=1..min(3,n)} k*a(n-k)/(n-k)!.
D-finite with recurrence a(n) + a(n-1) +2*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 07 2020

A118588 Triangle generated by e.g.f.: A(x,y) = exp(x + y*(x^2+x^3)), read by rows of length [n/2+1].

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 36, 12, 1, 80, 180, 1, 150, 1260, 120, 1, 252, 5460, 3360, 1, 392, 17640, 43680, 1680, 1, 576, 46872, 342720, 75600, 1, 810, 108360, 1839600, 1587600, 30240, 1, 1100, 225720, 7539840, 20235600, 1995840, 1, 1452, 433620, 25391520
Offset: 0

Views

Author

Paul D. Hanna, May 08 2006

Keywords

Comments

E.g.f. V(x) of eigenvector A119013 satisfies: V(x) = exp(x)*V(x^2+x^3); note the similarity to e.g.f. of this triangle.

Examples

			Triangle begins:
1;
1;
1,2;
1,12;
1,36,12;
1,80,180;
1,150,1260,120;
1,252,5460,3360;
1,392,17640,43680,1680;
1,576,46872,342720,75600; ...
O.g.f. for columns:
0!/0!*(1)/(1-x);
2!/1!*(1+2*x)/(1-x)^4;
4!/2!*(1+8*x+21*x^2)/(1-x)^7;
6!/3!*(1+18*x+129*x^2+356*x^3)/(1-x)^10;
8!/4!*(1+32*x+438*x^2+2984*x^3+8425*x^4)/(1-x)^13; ...
		

Crossrefs

Cf. A118589 (row sums), A119013 (eigenvector).

Programs

  • PARI
    {T(n,k)=n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)),n,x),k,y)}

A119013 Eigenvector of triangle A118588; E.g.f. satisfies: A(x) = exp(x)*A(x^2+x^3).

Original entry on oeis.org

1, 1, 3, 13, 73, 621, 5491, 60313, 743793, 10115353, 158914531, 2815311621, 55094081593, 1142894689093, 25142695616403, 594557634923281, 15084112106943841, 407999468524242993, 11669035487641120963
Offset: 0

Views

Author

Paul D. Hanna, May 08 2006

Keywords

Comments

E.g.f. of triangle A118588 is exp(x + y*(x^2+x^3)); note the similarity to the e.g.f. of this sequence. More generally, the e.g.f. of an eigenvectors can be determined from the e.g.f. of a triangle as follows. [ Given a triangle with e.g.f.: exp(x + y*x*F(x)) such that F(0) = 0, then the eigenvector has e.g.f.: exp(G(x)) where o.g.f. G(x) satisfies: G(x) = x + G(x*F(x)). ]

Examples

			A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 621*x^5/5! +...
log(A(x)) = o.g.f. of A014535 =
x + x^2+ x^3+ x^4+ 2*x^5+ 2*x^6+ 3*x^7+ 4*x^8+ 5*x^9+ 8*x^10 +...
		

Crossrefs

Cf. A118588 (triangle), A118589 (row sums), A014535 (log(A(x))).

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,a(k)*n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)),n,x),k,y)))}

Formula

Log(A(x)) = o.g.f. of A014535 (B-trees of order 3 with n leaves).

A376512 Expansion of e.g.f. exp(x^2 * (1 + x)).

Original entry on oeis.org

1, 0, 2, 6, 12, 120, 480, 2520, 21840, 120960, 937440, 8316000, 60540480, 570810240, 5465940480, 49037788800, 523588665600, 5504686387200, 57816850291200, 678823104960000, 7844848544332800, 93064133530368000, 1184800751111577600, 14967781957781452800
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(k, n-2*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(k,n-2*k)/k!.
a(n) = (n-1) * (2*a(n-2) + 3*(n-2)*a(n-3)).
a(n) ~ 3^(n/3 - 1/2) * exp(4/81 - 2*3^(-7/3)*n^(1/3) + 3^(-2/3)*n^(2/3) - 2*n/3) * n^(2*n/3) * (1 + 223/(3^(20/3)*n^(1/3))). - Vaclav Kotesovec, Sep 26 2024
Showing 1-7 of 7 results.