A119291
Total number of zero digits in first 10^n primes.
Original entry on oeis.org
0, 9, 191, 3303, 46188, 557005, 6481183, 76292782, 881025347, 9763247930, 106864564286, 1162019145892
Offset: 1
a(2)=9 since there are 9 zero digits in the first 100 primes.
-
A055641 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,10) do if d = 0 then a := a+1 ; fi ; od: a ; end: p := 2: n := 1: c :=0 : nsw := 10 : while true do n := n+1 ; p := nextprime(p) ; c := c+A055641(p) ; if n = nsw then print(c) ; nsw := 10*nsw ; fi ; od: # R. J. Mathar, May 30 2008
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 0, 2], {n, 6}] (* Robert Price, May 02 2019 *)
-
my(x=10, i=0, j=0); forprime(p=1, , j++; my(d=digits(p)); i+=#setintersect(vecsort(d), vector(#d, t, 0)); if(j==x, print1(i, ", "); x=10*x)) \\ Felix Fröhlich, May 02 2019
A119293
Total number of 2's digits in the first 10^n primes.
Original entry on oeis.org
3, 26, 339, 4070, 55213, 632418, 7133747, 82051293, 1041785731, 12182327373, 137771632675, 1525041000685
Offset: 1
At a(1)=3 there are 3 2's digits in the first 10^1 primes.
-
A119293 := proc(n) option remember: local k,s,lim: if(n=0)then return 1:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("2",convert(ithprime(k),string))]): od: return s: end: seq(A119293(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 2, 2], {n, 6}] (* Robert Price, May 02 2019 *)
A119296
Total number of 5's digits in the first 10^n primes.
Original entry on oeis.org
1, 15, 327, 3904, 47525, 590450, 7087898, 79504457, 887852429, 9862623240, 110885914721, 1199346258292
Offset: 1
At a(2)=15 there are 15 5's digits in the first 10^2 primes.
-
A119296 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("5",convert(ithprime(k),string))]): od: return s: end: seq(A119296(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Total[DigitCount[#, 10, 5]&/@Prime[Range[10^n]]], {n, 7}] (* Vincenzo Librandi, Sep 09 2015 *)
A119299
Total number of 8's digits in the first 10^n primes.
Original entry on oeis.org
0, 8, 195, 3763, 47174, 558842, 6541723, 79273100, 882188472, 9770202402, 106927984586, 1198303968170
Offset: 1
At a(2)=8 there are 8 8's digits in the first 10^2 primes.
-
A119299 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("8",convert(ithprime(k),string))]): od: return s: end: seq(A119299(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Total[DigitCount[#,10,8]&/@Prime[Range[10^n]]],{n,7}] (* Harvey P. Dale, Apr 05 2011 *)
A119297
Total number of 6's digits in the first 10^n primes.
Original entry on oeis.org
0, 10, 315, 3824, 47269, 560677, 7079879, 79433407, 887292243, 9778050835, 110518283071, 1198946387631
Offset: 1
At a(2)=10 there are 10 6's digits in the first 10^2 primes.
-
A119297 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("6",convert(ithprime(k),string))]): od: return s: end: seq(A119297(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 6, 2], {n, 6}] (* Robert Price, May 02 2019 *)
A119298
Total number of 7's digits in the first 10^n primes.
Original entry on oeis.org
2, 34, 551, 6338, 72319, 809360, 9543704, 104376285, 1136782466, 12273965395, 134080968533, 1448607569210
Offset: 1
At a(1)=2 there are 2 7's digits in the first 10^1 primes.
-
A119298 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("7",convert(ithprime(k),string))]): od: return s: end: seq(A119298(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 7, 2], {n, 6}] (* Robert Price, May 02 2019 *)
Table[Total[Table[DigitCount[p,10,7],{p,Prime[Range[10^n]]}]],{n,7}] (* The program generates the first seven terms of the sequence. *) (* Harvey P. Dale, Dec 10 2024 *)
Showing 1-6 of 6 results.
Comments