cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A119300 Total number of 9's digits in the first 10^n primes.

Original entry on oeis.org

2, 33, 431, 6318, 72062, 806674, 9004550, 104220797, 1131743629, 12266783460, 131900123107, 1447662128808
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(3)=431 there are 431 9's digits in the first 10^3 = 1000 primes.
		

Crossrefs

Programs

  • Maple
    A119300 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("9",convert(ithprime(k),string))]): od: return s: end: seq(A119300(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    cnt=0; k=0; Table[While[k++; cnt=cnt+DigitCount[Prime[k], 10, 9];k < 10^n]; cnt, {n, 5}] (* T. D. Noe, May 10 2011 *)

Extensions

a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A231590 Total number of 1's digits in primes less than 10^n.

Original entry on oeis.org

0, 9, 78, 681, 6353, 59634, 570157, 5510645, 53680317, 525651276, 5166809159, 50931212973, 503152799893, 4979293536415
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=9, since there are 9 1's in primes less than 100. Namely: 11, 13, 17, 19, 31, 41, 61, 71.  Note that 11 counts for two.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 1, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231598 Total number of 9's digits in primes less than 10^n.

Original entry on oeis.org

0, 6, 67, 646, 6130, 58145, 558956, 5432190, 53071838, 520787464, 5127052380, 50599825547, 500350977737, 4955299345646
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=6, since there are 6 9's in primes less than 100. Namely: 19, 29, 59, 79, 89, 97.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 9, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231411 Total number of zero digits in primes less than 10^n.

Original entry on oeis.org

0, 0, 15, 232, 2725, 30350, 324133, 3386986, 34984325, 358604948, 3657365837, 37164550469, 376613845818, 3808514755978
Offset: 1

Views

Author

Robert Price, Nov 08 2013

Keywords

Examples

			a(3)=15, since there are 15 zeros in primes less than 1000.  Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n-1]]]], 0, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A119292 Total number of 1's digits in the first 10^n primes.

Original entry on oeis.org

5, 55, 574, 7043, 102370, 1222003, 13896979, 152844768, 1611113572, 16626301609, 171878734261, 1781706224877
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(1)=5 there are 5 1's digits in the first 10^1 primes.
		

Crossrefs

Programs

  • Maple
    A119292 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("1",convert(ithprime(k),string))]): od: return s: end: seq(A119292(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[10^n]]], 1, 2], {n, 6}] (* Robert Price, May 02 2019 *)
  • PARI
    my(x=10, i=0, j=0); forprime(p=1, , j++; my(d=digits(p)); i+=#setintersect(vecsort(d), vector(#d, t, 1)); if(j==x, print1(i, ", "); x=10*x)) \\ Felix Fröhlich, May 02 2019

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119293 Total number of 2's digits in the first 10^n primes.

Original entry on oeis.org

3, 26, 339, 4070, 55213, 632418, 7133747, 82051293, 1041785731, 12182327373, 137771632675, 1525041000685
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Comments

Count the 2's digits in 10^n primes.

Examples

			At a(1)=3 there are 3 2's digits in the first 10^1 primes.
		

Crossrefs

Programs

  • Maple
    A119293 := proc(n) option remember: local k,s,lim: if(n=0)then return 1:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("2",convert(ithprime(k),string))]): od: return s: end: seq(A119293(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[10^n]]], 2, 2], {n, 6}] (* Robert Price, May 02 2019 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119294 Total number of 3's digits in the first 10^n primes.

Original entry on oeis.org

3, 54, 569, 6500, 72717, 880415, 9616078, 105052677, 1139295891, 12676601300, 135996846047, 1450287630358
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(1)=3 there are 3 3's digits in the first 10^1 primes.
		

Crossrefs

Programs

  • Maple
    A119294 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("3",convert(ithprime(k),string))]): od: return s: end: seq(A119294(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Accumulate@Table[Count[IntegerDigits[Prime[Range[10^(n - 1) + 1, 10^n]]], 3, 2], {n, 6}] (* Robert Price, Jun 16 2019 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119295 Total number of 4's digits in the first 10^n primes.

Original entry on oeis.org

0, 27, 311, 3919, 47647, 628061, 7098709, 79587350, 888504625, 10169426048, 110936566287, 1199775766812
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(2)=27 there are 27 4's digits in the first 10^2 primes.
		

Crossrefs

Programs

  • Maple
    A119295 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("4",convert(ithprime(k),string))]): od: return s: end: seq(A119295(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Accumulate@Table[c = 0; For[i = 10^(n - 1) + 1, i <= 10^n, i++, c += Count[IntegerDigits[Prime[i]], 4]]; c, {n, 6}] (* Robert Price, Jun 09 2019 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119296 Total number of 5's digits in the first 10^n primes.

Original entry on oeis.org

1, 15, 327, 3904, 47525, 590450, 7087898, 79504457, 887852429, 9862623240, 110885914721, 1199346258292
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(2)=15 there are 15 5's digits in the first 10^2 primes.
		

Crossrefs

Programs

  • Maple
    A119296 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("5",convert(ithprime(k),string))]): od: return s: end: seq(A119296(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Total[DigitCount[#, 10, 5]&/@Prime[Range[10^n]]], {n, 7}] (* Vincenzo Librandi, Sep 09 2015 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119299 Total number of 8's digits in the first 10^n primes.

Original entry on oeis.org

0, 8, 195, 3763, 47174, 558842, 6541723, 79273100, 882188472, 9770202402, 106927984586, 1198303968170
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(2)=8 there are 8 8's digits in the first 10^2 primes.
		

Crossrefs

Programs

  • Maple
    A119299 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("8",convert(ithprime(k),string))]): od: return s: end: seq(A119299(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Total[DigitCount[#,10,8]&/@Prime[Range[10^n]]],{n,7}]  (* Harvey P. Dale, Apr 05 2011 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019
Showing 1-10 of 20 results. Next