A119998
a(n) is the smallest positive integer whose square starts with (at least) n identical digits.
Original entry on oeis.org
1, 15, 149, 2357, 10541, 57735, 745356, 1490712, 182574186, 298142397, 298142397, 1490711985, 1490711985, 10540925533895, 74535599249993, 105409255338946, 7453559924999299, 14907119849998598, 471404520791031683, 7453559924999298988
Offset: 1
Note that 15^2 = 225 and 149^2 = 22201.
A132391
Numbers whose square starts with 4 identical digits.
Original entry on oeis.org
2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10541, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333
Offset: 1
Example: 2357^2 = 5555449.
-
R:= NULL: count:= 0:
for d from 1 while count < 100 do
for i from 1 to 9 do
L:= i*1111*10^d;
X:= [$ceil(sqrt(L)) .. floor(sqrt(L+10^d-1))];
m:= nops(X);
if m > 0 then
count:= count+nops(X);
R:= R, op(X);
fi
od od:
R; # Robert Israel, Mar 12 2021
-
Select[Range[10, 50000], Length[Union[Take[IntegerDigits[ #^2], 4]]] == 1 & ]
(* or *)
(* Here's a more generic Mathematica program that calculates the first q terms of squares starting with n identical digits *)
n=4; q=30; t=Table[(10^n-1)*i/9, {i,1,9}]; u=Sqrt[Union[t,10*t]];
v=Sqrt[Union[t+1, 10*(t+1)]]; k=1; While[s=Sort[Flatten[Table[Union
[Table[Range[Ceiling[10^j*u[[i]]], f=10^j*v[[i]]; If[IntegerQ[f],
f=f-1]; Floor[f]], {i,1,18}]], {j,0,k}]]]; Length[s]Hans Havermann, Aug 30 2007 *)
-
def aupto(limit):
alst = []
for m in range(34, limit+1):
if len(set(str(m*m)[:4])) == 1: alst.append(m)
return alst
print(aupto(33333)) # Michael S. Branicky, Mar 12 2021
A119866
Numbers whose square starts with 5 identical digits.
Original entry on oeis.org
10541, 33334, 47141, 57735, 66667, 105409, 105410, 105411, 105412, 105413, 149071, 149072, 149073, 182574, 182575, 182576, 210818, 210819, 235702, 235703, 258198, 258199, 278886, 278887, 298141, 298142, 316227, 333332, 333333, 333334
Offset: 1
10541^2=111112681, 33334^2=1111155556.
-
Select[ Range[ 100, 500000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 5 ] ] ] == 1 & ] (* Jonathan Vos Post, Aug 29 2007 *)
A119887
Numbers whose square starts with 6 identical digits.
Original entry on oeis.org
57735, 333334, 471405, 577350, 666667, 745356, 881917, 942809, 1054093, 1054094, 1054095, 1054096, 1490712, 1490713, 1490714, 1825741, 1825742, 1825743, 2108185, 2108186, 2357022, 2357023, 2581988, 2581989, 2788866, 2788867
Offset: 1
57735^2=3333330225, 333334^2=111111555556.
-
Select[ Range[ 1000, 5000000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 6 ] ] ] == 1 & ] (* Jonathan Vos Post, Aug 29 2007 *)
A131699
Smallest number whose n-th power begins with precisely n identical digits (in base ten).
Original entry on oeis.org
1, 15, 322, 167, 6444, 32183, 7306, 225418, 6551032, 683405939, 7074698775, 26331754107, 844494314469, 11303028458639, 251188643150958, 93364101391902, 16114920282762613, 239390020079624346, 191165654339590395
Offset: 1
a(1) = 1 because 1^1 = 1 begins with precisely 1 identical digit.
a(2) = 15 because 15^2 = 225 begins with precisely 2 identical digits.
a(3) = 322 because 322^3 = 33386248 begins with precisely 3 identical digits.
a(4) = 167 because 167^4 = 777796321 begins with precisely 4 identical digits.
a(5) = 6444 because 6444^5 = 11111627111310388224 begins with precisely 5 identical digits.
A192934
Smallest square number starting with (at least) n identical digits.
Original entry on oeis.org
1, 225, 22201, 5555449, 111112681, 3333330225, 555555566736, 2222222266944, 33333333393562596, 88888888888905609, 88888888888905609, 2222222222222640225, 2222222222222640225, 111111111111119590793871025, 5555555555555557064110500049, 11111111111111115805344390916
Offset: 1
a(2) = 225 because none of 11, 22, 33, 44, 55, 66, 77, 88, 99, any integer from 110 to 119, or any integer from 220 to 224 is a square, but 15^2 = 225.
-
a(n) = {if (n == 1, return (1)); ok = 0; i = 1; while (! ok, i++; d = digits(i^2, 10); if (#d >= n, ok = 1; for (k = 2, n, if (d[k] != d[1], ok = 0; break;);););); return (i^2);} \\ Michel Marcus, Jun 14 2013
A346926
a(n) is the smallest positive integer whose square starts and ends with exactly n identical digits, and a(n) = 0 when there is no such integer.
Original entry on oeis.org
1, 88, 10538, 235700, 0, 57735000, 0, 14907120000, 0, 235702260400000, 0, 7453559925000000, 0, 105409255338950000000, 0, 10540925533894600000000, 0, 14907119849998598000000000, 0, 74535599249992989880000000000, 0, 210818510677891955466600000000000, 0
Offset: 1
a(2) = 88 because 88^2 = 7744 starts with two 7's and ends with two 4's, and 88 is the smallest integer whose square starts and ends with exactly 2 identical digits.
a(4) = 235700 because 235700^2 = 55554490000 starts with four 5's and ends with four 0's, and 235700 is the smallest integer whose square starts and ends with exactly 4 identical digits.
A167712
a(n) = the smallest positive number, not ending in 0, whose square has a substring of exactly n identical digits.
Original entry on oeis.org
1, 12, 38, 1291, 10541, 57735, 364585, 1197219, 50820359, 169640142, 298142397, 4472135955, 1490711985, 2185812841434
Offset: 1
a(1)=1: 1^2=1 (1 one), a(1)=A119511(1)=A119998(1)
a(2)=12: 12^2=144 (2 fours)
a(3)=38: 38^2=1444 (3 fours)
a(4)=1291: 1291^2=1666681 (4 sixes)
a(5)=10541: 10541^2=111112681 (5 ones), a(5)=A119511(5)=A119998(5)
a(6)=57735: 57735^2=3333330225 (6 threes), a(6)=A119511(6)=A119998(6)
a(7)=364585: 364585^2=132922222225 (7 twos)
a(8)=1197219: 1197219^2=1433333333961 (8 threes)
a(9)=50820359: 50820359^2=2582708888888881 (9 eights)
a(10)=169640142: 169640142^2=28777777777780164 (10 sevens)
a(11)=298142397: 298142397^2=88888888888905609 (11 eights), a(11)=A119511(11)=A119998(11)
a(12)=4472135955: 4472135955^2=20000000000003762025 (12 zeros)
a(13)=1490711985: 1490711985^2=2222222222222640225 (13 twos), a(13)=A119511(13)=A119998(12,13).
-
a[n_] := Block[{k=1}, While[Mod[k, 10] == 0 || !MemberQ[Length /@ Split[ IntegerDigits[ k^2]], n], k++]; k]; Array[a, 7] (* Giovanni Resta, Apr 11 2017 *)
A174499
Smallest number whose square starts and ends with (at least) n identical digits.
Original entry on oeis.org
1, 88, 10538, 235700, 10541000, 57735000, 7453560000, 14907120000, 18257418600000, 29814239700000, 298142397000000, 1490711985000000, 14907119850000000, 105409255338950000000, 7453559924999300000000, 10540925533894600000000
Offset: 1
a(3) = 10538 because 10538^2 = 111049444 starts and ends in 3 identical digits.
a(5) = 10541000 because 10541000^2 = 111112681000000 starts with 5 identical digits and ends with 6 identical digits.
-
with(numtheory):T:=array(1..100):p0:=10:for k from 2 to 10 do: id:= 0:for p
from p0 to 100000000 while(id=0) do:n:=p^2:l:=length(n):n0:=n:for m from 1 to
l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :T[m]:=u:od:z:=0:for a from 1
to k-1 do: if T[l]=T[l-a] and T[1]=T[1+a] then z:=z+1:else fi:od:if z=k-1 then
print(p):id:=1:p0:=p:else fi:od:od:
Name clarified and a(10) and a(12) corrected by
Bernard Schott, Aug 08 2021
Showing 1-9 of 9 results.
Comments