cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A119998 a(n) is the smallest positive integer whose square starts with (at least) n identical digits.

Original entry on oeis.org

1, 15, 149, 2357, 10541, 57735, 745356, 1490712, 182574186, 298142397, 298142397, 1490711985, 1490711985, 10540925533895, 74535599249993, 105409255338946, 7453559924999299, 14907119849998598, 471404520791031683, 7453559924999298988
Offset: 1

Views

Author

Tanya Khovanova, Jul 26 2006

Keywords

Examples

			Note that 15^2 = 225 and 149^2 = 22201.
		

Crossrefs

Formula

a(n) <= A119511(n). - R. J. Mathar, Aug 08 2006
a(n) = sqrt(A192934(n)). - Alois P. Heinz, Sep 02 2011

Extensions

More terms from R. J. Mathar, Jul 29 2006
More terms from R. J. Mathar, Aug 08 2006

A132391 Numbers whose square starts with 4 identical digits.

Original entry on oeis.org

2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10541, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333
Offset: 1

Views

Author

Jonathan Vos Post, Aug 29 2007

Keywords

Examples

			Example: 2357^2 = 5555449.
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for d from 1 while count < 100 do
      for i from 1 to 9 do
        L:= i*1111*10^d;
        X:= [$ceil(sqrt(L)) .. floor(sqrt(L+10^d-1))];
        m:= nops(X);
        if m > 0 then
          count:= count+nops(X);
          R:= R, op(X);
        fi
    od od:
    R; # Robert Israel, Mar 12 2021
  • Mathematica
    Select[Range[10, 50000], Length[Union[Take[IntegerDigits[ #^2], 4]]] == 1 & ]
    (* or *)
    (* Here's a more generic Mathematica program that calculates the first q terms of squares starting with n identical digits *)
    n=4; q=30; t=Table[(10^n-1)*i/9, {i,1,9}]; u=Sqrt[Union[t,10*t]];
    v=Sqrt[Union[t+1, 10*(t+1)]]; k=1; While[s=Sort[Flatten[Table[Union
    [Table[Range[Ceiling[10^j*u[[i]]], f=10^j*v[[i]]; If[IntegerQ[f],
    f=f-1]; Floor[f]], {i,1,18}]], {j,0,k}]]]; Length[s]Hans Havermann, Aug 30 2007 *)
  • Python
    def aupto(limit):
      alst = []
      for m in range(34, limit+1):
        if len(set(str(m*m)[:4])) == 1: alst.append(m)
      return alst
    print(aupto(33333)) # Michael S. Branicky, Mar 12 2021

A119866 Numbers whose square starts with 5 identical digits.

Original entry on oeis.org

10541, 33334, 47141, 57735, 66667, 105409, 105410, 105411, 105412, 105413, 149071, 149072, 149073, 182574, 182575, 182576, 210818, 210819, 235702, 235703, 258198, 258199, 278886, 278887, 298141, 298142, 316227, 333332, 333333, 333334
Offset: 1

Views

Author

Zak Seidov, Aug 04 2006

Keywords

Examples

			10541^2=111112681, 33334^2=1111155556.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 100, 500000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 5 ] ] ] == 1 & ] (* Jonathan Vos Post, Aug 29 2007 *)

A119887 Numbers whose square starts with 6 identical digits.

Original entry on oeis.org

57735, 333334, 471405, 577350, 666667, 745356, 881917, 942809, 1054093, 1054094, 1054095, 1054096, 1490712, 1490713, 1490714, 1825741, 1825742, 1825743, 2108185, 2108186, 2357022, 2357023, 2581988, 2581989, 2788866, 2788867
Offset: 1

Views

Author

Zak Seidov, Aug 04 2006

Keywords

Examples

			57735^2=3333330225, 333334^2=111111555556.
		

Crossrefs

Cf. A119511.

Programs

  • Mathematica
    Select[ Range[ 1000, 5000000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 6 ] ] ] == 1 & ] (* Jonathan Vos Post, Aug 29 2007 *)

A131699 Smallest number whose n-th power begins with precisely n identical digits (in base ten).

Original entry on oeis.org

1, 15, 322, 167, 6444, 32183, 7306, 225418, 6551032, 683405939, 7074698775, 26331754107, 844494314469, 11303028458639, 251188643150958, 93364101391902, 16114920282762613, 239390020079624346, 191165654339590395
Offset: 1

Views

Author

Keywords

Comments

Main diagonal of array A[k,n] = n-th positive integer whose square (base 10) begins with k identical digits. M. F. Hasler points out that numbers whose squares start with 4 identical digits; numbers whose squares start with 5 identical digits; and numbers whose squares start with 6 identical digits; are already in the OEIS (along with A119511, A119998).
For the less stringent condition of the n-th power beginning with at least n identical digits, replace the numbers at indices {14,23,27,49,53} with:
14 1247955519394
23 2237770493401064693452
27 119060799886319434107761934
49 1389495494373137637129985217353011622113046714491
53 6489094571807720876517179893325894917102663447322282, respectively.

Examples

			a(1) = 1 because 1^1 = 1 begins with precisely 1 identical digit.
a(2) = 15 because 15^2 = 225 begins with precisely 2 identical digits.
a(3) = 322 because 322^3 = 33386248 begins with precisely 3 identical digits.
a(4) = 167 because 167^4 = 777796321 begins with precisely 4 identical digits.
a(5) = 6444 because 6444^5 = 11111627111310388224 begins with precisely 5 identical digits.
		

Crossrefs

See A132392 for another version.

Formula

a(n) = Min{k>0 such that k^n begins with precisely n identical leftmost digits (base ten)}.

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

A192934 Smallest square number starting with (at least) n identical digits.

Original entry on oeis.org

1, 225, 22201, 5555449, 111112681, 3333330225, 555555566736, 2222222266944, 33333333393562596, 88888888888905609, 88888888888905609, 2222222222222640225, 2222222222222640225, 111111111111119590793871025, 5555555555555557064110500049, 11111111111111115805344390916
Offset: 1

Views

Author

J. Lowell, Aug 25 2011

Keywords

Comments

Conjecture: total number of digits of a(n) is always 2*n-1.
This conjecture is false: length(a(6)) = 10 != 2*6-1 = 11.

Examples

			a(2) = 225 because none of 11, 22, 33, 44, 55, 66, 77, 88, 99, any integer from 110 to 119, or any integer from 220 to 224 is a square, but 15^2 = 225.
		

Crossrefs

Programs

  • PARI
    a(n) = {if (n == 1, return (1)); ok = 0; i = 1; while (! ok, i++; d = digits(i^2, 10); if (#d >= n, ok = 1; for (k = 2, n, if (d[k] != d[1], ok = 0; break;);););); return (i^2);} \\ Michel Marcus, Jun 14 2013

Formula

a(n) = A119998(n)^2.

Extensions

More terms from Alois P. Heinz, Sep 02 2011

A346926 a(n) is the smallest positive integer whose square starts and ends with exactly n identical digits, and a(n) = 0 when there is no such integer.

Original entry on oeis.org

1, 88, 10538, 235700, 0, 57735000, 0, 14907120000, 0, 235702260400000, 0, 7453559925000000, 0, 105409255338950000000, 0, 10540925533894600000000, 0, 14907119849998598000000000, 0, 74535599249992989880000000000, 0, 210818510677891955466600000000000, 0
Offset: 1

Views

Author

Bernard Schott, Aug 07 2021

Keywords

Comments

When a square ends in exactly three identical digits, these digits are necessarily 444 (A039685).
When a square ends with n > 3 identical digits, these last digits are necessarily 0's, and also this is only possible when n is even.
Differs from A174499 where only at least n identical digits are required.

Examples

			a(2) = 88 because 88^2 = 7744 starts with two 7's and ends with two 4's, and 88 is the smallest integer whose square starts and ends with exactly 2 identical digits.
a(4) = 235700 because 235700^2 = 55554490000 starts with four 5's and ends with four 0's, and 235700 is the smallest integer whose square starts and ends with exactly 4 identical digits.
		

Crossrefs

Formula

a(2*n+1) = 0 for n >= 2.
a(2*n) = A119511(2*n) * 10^n, for n >= 2.

A167712 a(n) = the smallest positive number, not ending in 0, whose square has a substring of exactly n identical digits.

Original entry on oeis.org

1, 12, 38, 1291, 10541, 57735, 364585, 1197219, 50820359, 169640142, 298142397, 4472135955, 1490711985, 2185812841434
Offset: 1

Views

Author

Zak Seidov, Nov 10 2009

Keywords

Examples

			a(1)=1: 1^2=1 (1 one), a(1)=A119511(1)=A119998(1)
a(2)=12: 12^2=144 (2 fours)
a(3)=38: 38^2=1444 (3 fours)
a(4)=1291: 1291^2=1666681 (4 sixes)
a(5)=10541: 10541^2=111112681 (5 ones), a(5)=A119511(5)=A119998(5)
a(6)=57735: 57735^2=3333330225 (6 threes), a(6)=A119511(6)=A119998(6)
a(7)=364585: 364585^2=132922222225 (7 twos)
a(8)=1197219: 1197219^2=1433333333961 (8 threes)
a(9)=50820359: 50820359^2=2582708888888881 (9 eights)
a(10)=169640142: 169640142^2=28777777777780164 (10 sevens)
a(11)=298142397: 298142397^2=88888888888905609 (11 eights), a(11)=A119511(11)=A119998(11)
a(12)=4472135955: 4472135955^2=20000000000003762025 (12 zeros)
a(13)=1490711985: 1490711985^2=2222222222222640225 (13 twos), a(13)=A119511(13)=A119998(12,13).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1}, While[Mod[k, 10] == 0 || !MemberQ[Length /@ Split[ IntegerDigits[ k^2]], n], k++]; k]; Array[a, 7] (* Giovanni Resta, Apr 11 2017 *)

Extensions

a(14) from Giovanni Resta, Apr 11 2017

A174499 Smallest number whose square starts and ends with (at least) n identical digits.

Original entry on oeis.org

1, 88, 10538, 235700, 10541000, 57735000, 7453560000, 14907120000, 18257418600000, 29814239700000, 298142397000000, 1490711985000000, 14907119850000000, 105409255338950000000, 7453559924999300000000, 10540925533894600000000
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2011

Keywords

Comments

For n > 3 the last n identical digits are zeros. Proof:
For n = 3, the numbers a(n) == {0, 38, 100, 200, 300, 400, 462, 500, 538, 600, 700, 800, 900, 962} mod 1000, but for n = 4, if the suffix is different from zero, a(n) == {38, 462, 538, 962} mod 1000, and for d from [1..9], (d038)^2 <> 4444 (mod 10000), (d462)^2 <> 4444 (mod 10000), (d538)^2 <> 4444 (mod 10000), (d962)^2 <> 4444 (mod 10000).
Differs from A346926 where exactly n identical digits are required. - Bernard Schott, Aug 08 2021

Examples

			a(3) = 10538 because 10538^2 = 111049444 starts and ends in 3 identical digits.
a(5) = 10541000 because 10541000^2 = 111112681000000 starts with 5 identical digits and ends with 6 identical digits.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..100):p0:=10:for k from 2 to 10 do: id:= 0:for p
      from p0 to 100000000 while(id=0) do:n:=p^2:l:=length(n):n0:=n:for m from 1 to
      l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :T[m]:=u:od:z:=0:for a from 1
      to k-1 do: if T[l]=T[l-a] and T[1]=T[1+a] then z:=z+1:else fi:od:if z=k-1 then
      print(p):id:=1:p0:=p:else fi:od:od:

Formula

For n > 3, a(n) = A119998(n)*10^q, q = floor(n+1)/2. [corrected by Bernard Schott, Aug 08 2021]

Extensions

Name clarified and a(10) and a(12) corrected by Bernard Schott, Aug 08 2021
Showing 1-9 of 9 results.