cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A120290 Numerator of generalized harmonic number H(p-1,2p)= Sum[ 1/k^(2p), {k,1,p-1}] divided by p^2 for prime p>3.

Original entry on oeis.org

2479157521, 159936660724017234488561, 1119583852472161859174156302552583713828739479026834819554843860744244189
Offset: 3

Views

Author

Alexander Adamchuk, Jul 08 2006

Keywords

Comments

Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3.

Examples

			With prime(3) = 5, a(3) = numerator[ 1 + 1/2^10 + 1/3^10 + 1/4^10 ] / 5^2 = 61978938025 / 25 = 2479157521.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^(2*Prime[n]),{k,1,Prime[n]-1}]],{n,3,7}]/Table[Prime[n]^2,{n,3,7}]

Formula

a(n) = numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,Prime[n]-1} ]] / Prime[n]^2 for n>2.

A120289 Primes p such that p divides the numerator of Sum_{k=1..n-1} 1/prime(k)^p, where p = prime(n).

Original entry on oeis.org

5, 19, 47, 79, 109
Offset: 1

Views

Author

Alexander Adamchuk, Jul 08 2006

Keywords

Comments

Next term > 1690. - Michael S. Branicky, Jun 27 2022

Examples

			a(1) = 5 because prime 5 divides 275 = numerator(1/2^5 + 1/3^5).
Sum_{k=1..n-1} 1/prime(k)^prime(n) begins:
  n=2: 1/2^3 = 1/8;
  n=3: 1/2^5 + 1/3^5 = 275/7776;
  n=4: 1/2^7 + 1/3^7 + 1/5^7 = 181139311/21870000000;
  n=5: 1/2^11 + 1/3^11 + 1/5^11 + 1/7^11 = 17301861338484245234233/35027750054222100000000000.
		

Crossrefs

Cf. A119722.

Programs

  • Python
    from fractions import Fraction
    from sympy import isprime, primerange
    def ok(p):
        if p < 3 or not isprime(p): return False
        s = sum(Fraction(1, pk**p) for pk in primerange(2, p))
        return s.numerator%p == 0
    print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Jun 26 2022

A120347 Numerator of Sum_{k=1..n-1} 1/k^n.

Original entry on oeis.org

1, 9, 1393, 257875, 47463376609, 940908897061, 972213062238348973121, 7727182467755471289426059, 10338014371627802833957102351534201, 26038773205374138944970092886340352227, 205885410277133543091182509665217407908365393153956577
Offset: 2

Views

Author

Alexander Adamchuk, Aug 16 2006, Oct 31 2006

Keywords

Comments

Prime p>2 divides a(p). p^3 divides a(p) for prime p>3. p divides a((p+1)/2) for prime p = {7,11,17,19,23,31,41,43,47,59,67,71,73,79,83,89,97,103,...} = all primes excluding 2 and 3 from A045323[n] Primes congruent to {1, 2, 3, 7} mod 8.
a(n) = Numerator( H(n-1,n) ), where H(k,r) = Sum_{i=1..k} 1/i^r is the generalized harmonic number.

Crossrefs

Cf. A045323, A120289, A120352 (a(prime(n))), A119722 (a(prime(n))/prime(n)^3).

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^n,{k,1,n-1}]],{n,2,15}]

Formula

a(n) = Numerator(Sum_{k=1..n-1} 1/k^n). a(n) = Numerator[Zeta[n] - Zeta[n,n]].

A130681 Sum[ 1/k^(2p-1), {k,1,p-1}] divided by p^3, for prime p>3.

Original entry on oeis.org

41361119, 126941659254799099843, 201945187495172518712395211386399925751676163316330287629003467281801, 534565103485593943310791656810688803242468895931876288948761507813750601446840308490623197040810555162527973
Offset: 3

Views

Author

Alexander Adamchuk, Jun 29 2007

Keywords

Comments

The generalized harmonic number is H(n,m) = Sum[ 1/k^m, {k,1,n} ]. The numerator of H(p-1,2p-1) is divisible by p^3 for prime p>3. Also the numerator of H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n).

Examples

			Prime[3] = 5.
a(3) = numerator[ 1 + 1/2^9 + 1/3^9 + 1/4^9 ] / 5^3 = 5170139875/125 = 41361119.
		

Crossrefs

Cf. A119722.

Programs

  • Mathematica
    Table[ Numerator[ Sum[ 1/k^(2*Prime[n]-1), {k,1,Prime[n]-1} ] ] / Prime[n]^3, {n,3,10} ]
  • PARI
    a(n)=p=prime(n);numerator(sum(i=1,p-1,1/i^(2*p-1)))/p^3 \\ Ralf Stephan, Nov 10 2013

Formula

a(n) = Numerator[ Sum[ 1/k^(2*Prime[n]-1), {k,1,Prime[n]-1} ] ] / Prime[n]^3 for n>2.
a(n) = A228426(A000040(n))/A000040(n)^3.

Extensions

Edited by Ralf Stephan, Nov 10 2013

A120352 Numerator of Sum[ 1/k^p, {k,1,p-1} ], where p = Prime[n].

Original entry on oeis.org

1, 9, 257875, 940908897061, 26038773205374138944970092886340352227, 5706439637514064062030256049808675747470805004854626598761, 3819751175863358416058062379293843331497647520922258560223903226691067255782388923965399403291707829
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006, Oct 31 2006

Keywords

Comments

p^3 divides a(n) for n>2. A119722[n] = a(n)/p^3, p=Prime[n].
Numerators of Sum[ 1/k^n, {k,1,n-1} ] are listed in A120347(n) = {1, 9, 1393, 257875, 47463376609, 940908897061, ...}.

Crossrefs

Cf. A119722.
Cf. A120347.

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^Prime[n],{k,1,Prime[n]-1}]],{n,1,8}]

Formula

a(n) = Numerator[ Sum[ 1/k^Prime[n], {k,1,Prime[n]-1} ]]. a(n) = Numerator[ Zeta[p] - Zeta[p,p] ], for p = Prime[n].
a(n) = A120347[ Prime[n] ].

A130682 Numerator of generalized harmonic number H(p-1,p^2) = Sum_{k=1..p-1} 1/k^(p^2) divided by p^4 for prime p>3.

Original entry on oeis.org

1526339511795367850762323, 187024220802620550798074497168768775337833066860651232788557036897081398718783708709
Offset: 3

Views

Author

Alexander Adamchuk, Jun 29 2007

Keywords

Comments

The generalized harmonic number is H(n,m) = Sum_{k=1..n} 1/k^m. The numerator of the generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3. See A119722(n). The numerator of the generalized harmonic number H(p-1,p^2) is divisible by p^4 for prime p>3. In general, the numerator of the generalized harmonic number H(p-1,p^k) is divisible by p^(k+2) for prime p>3.

Examples

			Prime[3] = 5.
a(3) = numerator[ 1 + 1/2^25 + 1/3^25 + 1/4^25 ] / 5^4 = 953962194872104906726451875/625 = 1526339511795367850762323.
		

Crossrefs

Cf. A119722 = Numerator of generalized harmonic number H(p-1, p)= Sum[ 1/k^p, {k, 1, p-1}] divided by p^3 for prime p>3.

Programs

  • Mathematica
    Table[ Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4, {n,3,10} ]

Formula

a(n) = Numerator[ Sum[ 1/k^(Prime[n]^2), {k,1,Prime[n]-1} ] ] / Prime[n]^4 for n>2.

A116184 Numbers n such that 37^3 divides the numerator of generalized harmonic number H(36,n) = Sum[ 1/k^n, {k,1,36} ].

Original entry on oeis.org

3, 37, 39, 73, 75, 111, 147, 148, 183, 185, 219, 221, 255, 259, 291, 295, 327, 333, 363, 369, 399, 407, 435, 443, 471, 481, 507, 517, 543, 555, 579, 591, 615, 629, 651, 665, 687, 703, 723, 739, 759, 777, 795, 813, 831, 851, 867, 887, 903, 925, 939, 961, 975
Offset: 1

Views

Author

Alexander Adamchuk, Apr 08 2007

Keywords

Comments

Note the pattern in the first differences of a(n): {34,2,34,2,36,36,1,35,2,34,2,34,4,32,4,32,6,30,6,30,8,28,8,28,10,26,10,26,12,24,12,24,14,22,14,22,16,20,16,20,18,18,18,18,20,16,20,16,22,14,22,14,24,...}. Conjecture: All terms of the arithmetic progression 3+36k belong to a(n). Prime terms in a(n) are {3, 37, 73, 443, 739, 887, 1109, ...}. It appears that all primes in a(n) that are greater than 37 are of the form 37k-1. For example, 73 = 37*2-1, 443 = 37*12-1, 739 = 37*20-1, 887 = 37*24-1, 1109 = 37*30-1. Many terms in a(n) are the multiples of 37. There are terms of the form 37*m with m = {1,3,4,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,37,39,41,...}. Note that 37^4 divides the numerator of generalized harmonic number H(36,n) for n = {111, 147, 1047, 1369, 1443, 1479, ...} = {3*37, 3+4*36, 3+29*36, 37^2, 3+40*36, 3+41*36, ...}.

Crossrefs

Cf. A007408 = Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3. Cf. A119722, A017533.

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ 1/k^n, {k,1,36} ] ]; If[ IntegerQ[ f/37^3 ], Print[n] ], {n,1,1000}]

A125194 Numerator of generalized harmonic number H((p-1)/2,2p)= Sum[ 1/k^(2p), {k,1,(p-1)/2}] divided by p^2 for prime p>3.

Original entry on oeis.org

41, 1599366601, 10877829357646990581304675244472669289, 100935935338172297894217692920950359818733561, 9217176064595104612826996436899733706027947436610177335077693637792069056822883934927465549747441
Offset: 3

Views

Author

Alexander Adamchuk, Jan 13 2007

Keywords

Comments

Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3 (see A120290(n)). The numerator of generalized harmonic number H((p-1)/2,2p) is divisible by p^2 for prime p>3.

Examples

			Prime[3] = 5.
a(3) = Numerator[ 1 + 1/2^10 ] / 5^2 = 1025 / 25 = 41.
		

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[k];f=0;Do[f=f+1/n^(2p);g=Numerator[f];If[IntegerQ[g/(p)^2],Print[{p,g/p^2}]],{n,1,(p-1)/2}],{k,1,100}]

Formula

a(n) = Numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,(Prime[n]-1)/2} ]] / Prime[n]^2 for n>2.

A128820 Numerator of alternating generalized harmonic number H'(p-1,2p) = Sum_{k=1..p-1} (-1)^(k+1)/k^(2*p) divided by p^2 for prime p > 2.

Original entry on oeis.org

7, 2474315503, 53305712401979540402437, 5597916593064896381208777124641713285719656398067086247546781015747740847, 192635872080422175485338764164035657976855166649911323825254242037669356649787653784405726270977624462974729613783
Offset: 2

Views

Author

Alexander Adamchuk, Apr 10 2007

Keywords

Comments

Alternating generalized harmonic number is H'(n,m) = Sum_{k=1..n} (-1)^(k+1)*1/k^m. Numerator of H'(p-1,2n) is divisible by p for all integers n > 0 and primes p > 2. Numerator of H'(p-1,2p) is divisible by p^2 for prime p > 2.

Examples

			prime(2) = 3; a(2) = numerator(1 - 1/2^6) / 3^2 = 63/9 = 7.
prime(3) = 5; a(3) = numerator(1 - 1/2^10 + 1/3^10 - 1/4^10) / 5^2 = 61857887575/25 = 2474315503.
		

Crossrefs

Cf. A119722 (numerator of generalized harmonic number H(p-1, p) = Sum_{k=1..p-1} 1/k^p divided by p^3 for prime p>3).

Programs

  • Mathematica
    Table[ Numerator[ Sum[(-1)^(k+1)*1/k^(2*Prime[n]), {k,1,Prime[n]-1} ] ] / Prime[n]^2, {n,2,10} ]

Formula

a(n) = numerator(Sum_{k=1..prime(n)-1} (-1)^(k+1)/k^(2*prime(n))) / prime(n)^2 for n > 1.
Showing 1-9 of 9 results.