cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119996 Numerator of Sum_{k=1..n} 1/(Fibonacci(k)*Fibonacci(k+2)).

Original entry on oeis.org

1, 5, 14, 39, 103, 272, 713, 1869, 4894, 12815, 33551, 87840, 229969, 602069, 1576238, 4126647, 10803703, 28284464, 74049689, 193864605, 507544126, 1328767775, 3478759199, 9107509824, 23843770273, 62423800997, 163427632718
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> F(n+1)*F(n+2)-1); # G. C. Greubel, Jul 23 2019
  • Magma
    [Fibonacci(n+1)* Fibonacci(n+2)-1: n in [1..30]]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    with(combinat): seq(fibonacci(n+1)*fibonacci(n+2)-1, n=1..30); # Zerinvary Lajos, Jan 31 2008
  • Mathematica
    Numerator[Table[Sum[1/(Fibonacci[k]*Fibonacci[k+2]),{k,n}],{n,30}]]
    LinearRecurrence[{3,0,-3,1},{1,5,14,39},30] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    vector(30, n, f=fibonacci; f(n+1)*f(n+2)-1) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    f=fibonacci; [f(n+1)*f(n+2)-1 for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4); a(0)=1, a(1)=5, a(2)=14, a(3)=39. - Harvey P. Dale, Aug 22 2011
G.f.: ((x-2)*x-1)/(x^4 - 3*x^3 + 3*x - 1). - Harvey P. Dale, Aug 22 2011
a(n) = Fibonacci(n+1)*Fibonacci(n+2) - 1. - Gary Detlefs, Mar 31 2012
a(n) = Sum_{k=1..n} Fibonacci(k+1)^2. Can be proved by induction from Gary Detlefs formula. - Joel Courtheyn, Mar 15 2021