cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056608 Least prime factor of the n-th composite number.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 7, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 7, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 7, 2, 11, 2, 3, 2, 5, 2, 2, 3, 2, 2, 7, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Odimar Fabeny, Aug 07 2000

Keywords

Comments

Record values are seen when n = A120389(m). Conjecture: at each new record the count of the prior record follows A247509. Records seen are 2, 3, 5, 7, 11, ... and when 3, 5, 7, 11 are first seen, there have been 3, 3, 2, and 4 occurrences of 2, 3, 5, and 7. These are A247509(1) through A247509(4). Thus, the count for prime(60) would be A247509(60). - Bill McEachen, Jun 17 2024

Crossrefs

Cf. A052369 (largest prime factor of n, where n runs through composite numbers). - Klaus Brockhaus, Jun 23 2009
Cf. A160180.

Programs

  • Haskell
    a056608 = a020639 . a002808  -- Reinhard Zumkeller, Mar 29 2014
    
  • Magma
    [ PrimeDivisors(n)[1]: n in [2..140] | not IsPrime(n) ]; // Klaus Brockhaus, Jun 23 2009
    
  • Mathematica
    DeleteCases[Table[FactorInteger[n][[1, 1]] * Boole[Not[PrimeQ[n]]], {n, 2, 100}], 0] (* Alonso del Arte, Aug 21 2014 *)
    FactorInteger[#][[1,1]]&/@Select[Range[200],CompositeQ] (* Harvey P. Dale, Mar 16 2023 *)
  • PARI
    forcomposite(n=1, 1e2, p=factor(n)[1, 1]; print1(p, ", ")) \\ Felix Fröhlich, Aug 03 2014
    
  • Python
    from sympy import composite, factorint
    def A056608(n):
        return min(factorint(composite(n))) # Chai Wah Wu, Jul 22 2019

Formula

a(n) = A020639(A002808(n)) = A000040(A118663(n)). - M. F. Hasler, Apr 03 2012

Extensions

More terms from James Sellers, Aug 25 2000
Definition corrected by Reinhard Zumkeller, Mar 29 2014
Name changed by Alonso del Arte, Aug 21 2014

A161003 A list of the composite numbers divided by their largest prime factors.

Original entry on oeis.org

2, 2, 4, 3, 2, 4, 2, 3, 8, 6, 4, 3, 2, 8, 5, 2, 9, 4, 6, 16, 3, 2, 5, 12, 2, 3, 8, 6, 4, 9, 2, 16, 7, 10, 3, 4, 18, 5, 8, 3, 2, 12, 2, 9, 32, 5, 6, 4, 3, 10, 24, 2, 15, 4, 7, 6, 16, 27, 2, 12, 5, 2, 3, 8, 18, 7, 4, 3, 2, 5, 32, 14, 9, 20, 6, 8, 15, 2, 36, 10, 3, 16, 6, 5, 4, 9, 2, 7, 24, 11, 2, 3, 4
Offset: 1

Views

Author

Trevor Cassiliano (casstjc(AT)gmail.com), Jun 01 2009

Keywords

Comments

a(A120389(n)) = A000040(n). - Gionata Neri, May 07 2015
For n >= 2, a(x) = n where x = A066246(n*A006530(n)). - Robert Israel, May 07 2015

Examples

			n=1 4/2; n=2 6/3; n=3 8/2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc (n) if isprime(n) = false then n/factorset(n)[nops(factorset(n))] else end if end proc: seq(a(n), n = 2 .. 130); # Emeric Deutsch, Jun 27 2009
  • Mathematica
    With[{cmps=Select[Range[200],CompositeQ]},#/FactorInteger[#][[-1,1]]&/@ cmps] (* Harvey P. Dale, Mar 29 2017 *)

Formula

a(n) = A002808(n)/A052369(n). - Robert Israel, May 07 2015

Extensions

Extended by Emeric Deutsch, Jun 27 2009

A073814 a(n) is the smallest number k such that A073813(k) = prime(n).

Original entry on oeis.org

2, 4, 15, 33, 90, 129, 227, 288, 429, 694, 798, 1149, 1417, 1565, 1879, 2399, 2993, 3201, 3879, 4365, 4623, 5429, 6002, 6920, 8245, 8948, 9314, 10067, 10457, 11245, 14251, 15184, 16627, 17130, 19711, 20253, 21919, 23653, 24845, 26687, 28604, 29248, 32612, 33303, 34719, 35436, 39893, 44622, 46254
Offset: 1

Views

Author

Labos Elemer, Aug 15 2002

Keywords

Examples

			a(6)=129 means that c[129]-Max[URS[c[129]]=Prime[6]: c[129]=169, Max[URS[169]]=Max{26,39,...,143,156}=156; difference=169-156=13=6th prime. Suspicion: A073813(n) is always prime number!
		

Crossrefs

Cf. A120389. [From R. J. Mathar, Aug 07 2008]

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; tn[x_] := Table[j, {j, 1, x}]; di[x_] := Divisors[x]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; rs[x_] := Union[rrs[x], di[x]]; urs[x_] := Complement[tn[x], rs[x]]; Do[s=c[n]-Max[urs[c[n]]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10}]; t
    nn = 6 * 10^4; s = Function[k, k - SelectFirst[Range[k - 2, 2, -1], 1 < GCD[#, k] < # &]] /@ Select[Range[6, nn], ! PrimeQ@ # &]; Table[SelectFirst[Range@ Length@ s, s[[# - 1]] == Prime@ n &], {n, 49}] (* Michael De Vlieger, Mar 28 2016, Version 10 *)

Formula

Min{x; c[x]-Max[URS[c[x]]]=p(n)}, p(n)=n-th prime. See program.

Extensions

Definition corrected by Gionata Neri, Mar 28 2016
More terms from Michael De Vlieger, Mar 28 2016
Showing 1-3 of 3 results.