cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A086870 Primes equal to a product of twin primes minus 1 divided by 2.

Original entry on oeis.org

7, 17, 71, 449, 881, 2591, 9521, 39761, 106721, 179999, 206081, 342791, 388961, 596231, 847601, 1292831, 2268449, 2571911, 2836961, 3612671, 6223391, 6329681, 6415361, 8520191, 8946449, 9409121, 10342151, 12550049, 16485281, 18800711
Offset: 1

Views

Author

Cino Hilliard, Aug 20 2003

Keywords

Comments

From Jason Kimberley, Oct 22 2015 (Start)
Prime elements of A120876.
For each p in this list, A001221(2p) = A001222(2p) = A001221(2p+1) = A001222(2p+1) = 2.
2*a(n) is a subsequence of A103533. They first differ when 313619 is not in this sequence, but 2*313619 = 627238 = A103533(12).
(End)

Examples

			t1 = 71,t2 = 73, (71*73-1)/2 = 5182/2 = 2591 = prime.
		

Crossrefs

Programs

  • Mathematica
    Select[(Times[#, # + 2] - 1)/2 &@ Select[Prime@ Range@ 1000, PrimeQ[# + 2] &], PrimeQ] (* Michael De Vlieger, Nov 06 2015 *)
  • PARI
    for(n=1, 1e3, if(prime(n+1)-prime(n)==2 && isprime(k=(prime(n)*prime(n+1)-1)/2), print1(k", "))) \\ Altug Alkan, Nov 06 2015

Formula

Primes of the form (t1*t2-1)/2, where t1, t2 are twin primes.

A102770 (p*q - 1)/2 where p and q are consecutive odd primes.

Original entry on oeis.org

7, 17, 38, 71, 110, 161, 218, 333, 449, 573, 758, 881, 1010, 1245, 1563, 1799, 2043, 2378, 2591, 2883, 3278, 3693, 4316, 4898, 5201, 5510, 5831, 6158, 7175, 8318, 8973, 9521, 10355, 11249, 11853, 12795, 13610, 14445, 15483, 16199, 17285, 18431, 19010
Offset: 1

Views

Author

W. Neville Holmes, Feb 10 2005

Keywords

Comments

Primes in this sequence: 7, 17, 71, 449, 881, 2591, ... - Zak Seidov, Jan 14 2013

Examples

			a(1) = (3*5 - 1)/2 = 7.
a(2) = (5*7 - 1)/2 = 17.
a(3) = (7*11 - 1)/2 = 38.
		

Crossrefs

Programs

Formula

a(n) = (prime(n + 1)*prime(n + 2) - 1)/2.
a(n) ~ 0.5 n^2/log^2 n. - Charles R Greathouse IV, Jan 14 2013
a(n) = A023515(n+2)/2. - Jason Kimberley, Oct 23 2015

A120875 Product of twin primes minus 1.

Original entry on oeis.org

14, 34, 142, 322, 898, 1762, 3598, 5182, 10402, 11662, 19042, 22498, 32398, 36862, 39202, 51982, 57598, 72898, 79522, 97342, 121102, 176398, 186622, 213442, 272482, 324898, 359998, 381922, 412162, 435598, 656098, 675682, 685582, 736162
Offset: 1

Views

Author

Lekraj Beedassy, Jul 09 2006

Keywords

Comments

This sequence is a subsequence of A023515.

Crossrefs

Programs

  • Mathematica
    Times[#, # + 2] - 1 & /@ Select[Prime@ Range@ 150, PrimeQ[# + 2] &] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    for(n=1, 200, if(prime(n+1)-prime(n)==2, print1(prime(n)*prime(n+1)-1", "))) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = A037074(n)-1 = (A014574(n))^2 -2 = A075369(n)-2.
a(n) = 2*A120876(n). - Jason Kimberley, Oct 23 2015
a(n) = 36*A002822(n-1)^2-2, for n>1. - Jason Kimberley, Oct 23 2015
a(n) = A023515(A107770(n)). - Jason Kimberley, Oct 23 2015

A094949 Phi(m)*sigma(m), where m is the product of exactly two primes that differ by 2, where phi=A000010, sigma=A000203.

Original entry on oeis.org

192, 1152, 20160, 103680, 806400, 3104640, 12945600, 26853120, 108201600, 136002240, 362597760, 506160000, 1049630400, 1358807040, 1536796800, 2702128320, 3317529600, 5314118400, 6323748480, 9475464960, 14665694400
Offset: 1

Views

Author

Lekraj Beedassy, Jun 19 2004

Keywords

Comments

If m=p*q for the twin prime pair (p, q), then the relation p^2 + q^2 = 2*(m+2) is evident from equations p*(p+2)=m=q*(q-2). Now phi(m)=(p-1)*(q-1)=p^2 - 1 and sigma(m)=(p+1)*(q+1)=q^2 - 1, so that phi(m)*sigma(m)=(p*q)^2 -(p^2 + q^2)+1=m^2-2*(m+2)+1=(m-3)*(m+1).

Crossrefs

Programs

  • Mathematica
    EulerPhi[#]DivisorSigma[1,#]&/@Times@@@Select[Partition[Prime[ Range[ 200]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 13 2017 *)
  • PARI
    {m=400;p=1;while(p
    				

Formula

a(n)=(m-3)*(m+1), where m=A037074(n).
a(n)=192*A002415(k), where k=A040040(n-1).
a(n) = (A120875(n))^2 - 4 = 4*((A120876(n))^2 - 1). - Lekraj Beedassy, Jul 09 2006

Extensions

Corrected and extended by Jason Earls, Rick L. Shepherd, Vladeta Jovovic and Klaus Brockhaus, Jun 20 2004
Showing 1-4 of 4 results.