cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007732 Period of decimal representation of 1/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 6, 6, 1, 1, 16, 1, 18, 1, 6, 2, 22, 1, 1, 6, 3, 6, 28, 1, 15, 1, 2, 16, 6, 1, 3, 18, 6, 1, 5, 6, 21, 2, 1, 22, 46, 1, 42, 1, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 1, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 1, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson [ hals(AT)easynet.com ]

Keywords

Comments

Appears to be a divisor of A007733*A007736. - Henry Bottomley, Dec 20 2001
Primes p such that a(p) = p-1 are in A001913. - Dmitry Kamenetsky, Nov 13 2008
When 1/n has a finite decimal expansion (namely, when n = 2^a*5^b), a(n) = 1 while A051626(n) = 0. - M. F. Hasler, Dec 14 2015
a(n.n) >= a(n) where n.n is A020338(n). - Davide Rotondo, Jun 13 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 159 etc.

Crossrefs

Programs

  • Maple
    A007732 := proc(n)
        a132740 := 1 ;
        for pe in ifactors(n)[2] do
            if not op(1,pe) in {2,5} then
                a132740 := a132740*op(1,pe)^op(2,pe) ;
            end if;
        end do:
        if a132740 = 1 then
            1 ;
        else
            numtheory[order](10,a132740) ;
        end if;
    end proc:
    seq(A007732(n),n=1..50) ; # R. J. Mathar, May 05 2023
  • Mathematica
    Table[r = n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]; MultiplicativeOrder[10, r], {n, 100}] (* T. D. Noe, Oct 17 2012 *)
  • PARI
    a(n)=znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))) \\ Charles R Greathouse IV, Jan 14 2013
    
  • Python
    from sympy import n_order, multiplicity
    def A007732(n): return n_order(10,n//2**multiplicity(2,n)//5**multiplicity(5,n)) # Chai Wah Wu, Feb 07 2022
  • Sage
    def a(n):
        n = ZZ(n)
        rad = 2**n.valuation(2) * 5**n.valuation(5)
        return Zmod(n // rad)(10).multiplicative_order()
    [a(n) for n in range(1, 20)]
    # F. Chapoton, May 03 2020
    

Formula

Note that if n=r*s where r is a power of 2 and s is odd then a(n)=a(s). Also if n=r*s where r is a power of 5 and s is not divisible by 5 then a(n) = a(s). So we just need a(n) for n not divisible by 2 or 5. This is the smallest number m such that n divides 10^m - 1; m is a divisor of phi(n), where phi = A000010.
phi(n) = n-1 only if n is prime and since a(n) divides phi(n), a(n) can only equal n-1 if n is prime. - Scott Hemphill (hemphill(AT)alumni.caltech.edu), Nov 23 2006
a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=1. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers, Feb 05 2000

A291943 a(0)=0; for n>0, a(n) = (2n)-th digit after the decimal point in the decimal expansion of 1/(2n+1).

Original entry on oeis.org

0, 3, 0, 7, 1, 9, 3, 6, 7, 1, 4, 3, 0, 3, 1, 9, 3, 5, 7, 2, 9, 3, 2, 7, 8, 1, 3, 1, 1, 1, 9, 1, 3, 7, 1, 9, 3, 3, 9, 1, 7, 3, 7, 1, 1, 9, 1, 5, 7, 1, 9, 3, 0, 7, 1, 0, 3, 6, 0, 0, 8, 0, 0, 7, 0, 9, 8, 0, 7, 1, 0, 9, 8, 4, 1, 9, 4, 4, 7, 0, 6, 3, 0, 7, 3, 5, 3, 4, 0, 1, 9, 0, 4, 5, 0, 9, 3, 0, 7, 1
Offset: 0

Views

Author

Marco Matosic, Sep 06 2017

Keywords

Examples

			a(3)=7 since we want the sixth decimal digit of 1/7.
		

References

  • John H. Conway & Richard K. Guy, The Book of Numbers; Springer 1996.

Crossrefs

Programs

  • Maple
    f:= proc(n) floor(10^(2*n)/(2*n+1)) mod 10 end proc:
    f(0):= 0:
    map(f, [$0..100]); # Robert Israel, Oct 31 2017
  • Mathematica
    f[n_] := Mod[Floor[10^(2n)/(2n +1)], 10]; f[0] = 0; Array[f, 105, 0] (* Robert G. Wilson v, Oct 31 2017 *)

Extensions

Edited by N. J. A. Sloane, Oct 30 2017
a(82) corrected by Robert Israel, Oct 31 2017

A158899 These are numbers n such that the reciprocal, 1/n, is a repeating fraction whose period is n/2 - 1.

Original entry on oeis.org

14, 34, 38, 46, 58, 94, 118, 122, 194, 218, 226, 262, 298, 334, 358, 362, 386, 446, 458, 466, 514, 526, 538, 626, 674, 734, 758, 766, 778, 838, 866, 922, 974, 982, 998, 1006, 1018, 1082, 1142, 1154, 1186, 1238, 1294, 1318, 1402, 1418, 1454, 1486, 1622, 1642
Offset: 1

Views

Author

Robert Hutchins, Mar 29 2009

Keywords

Comments

These numbers relate to the long period primes, those that for 1/m the period is m-1 (sequence A006883) in that by multiplying each term in the long period primes by 2, this sequence is generated.

Crossrefs

Programs

  • PARI
    forstep(n=2, 2e3, 2, if ((setminus(Set(factor(n)[,1]), Set([2,5])) != []) && (znorder(Mod(10, n/2^valuation(n, 2)/5^valuation(n, 5))) + 1 == n/2), print1(n, ", "));); \\ Michel Marcus, Feb 24 2013

Extensions

More terms and edited by Michel Marcus, Feb 24 2013

A225488 Murai Chuzen numbers.

Original entry on oeis.org

9, 45, 3, 225, 18, 15, -1, 1125, 1, 99, 495, 33, 2475, 198, 165, -1, 12375, 11, 999, 4995, 333, 24975, 1998, 1665, -1, 124875, 111, 9999, 49995, 3333, 249975, 19998, 16665, -1, 1249875, 1111, 99999, 49995, 33333, 2499975, 199998, 166665, -1, 12499875, 11111, 999999, 4999995, 333333, 24999975, 1999998, 1666665, -1, 124999875, 111111
Offset: 1

Views

Author

Jonathan Sondow, May 10 2013

Keywords

Comments

"Murai Chuzen divides 9 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 9, 45, 3, 225, 18, 15, x (not divisible), 1125, 1, -- without reference to the decimal points. Similarly he divides 99 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 99, 495, 33, 2475, 198, 165, x, 12375, 11. Next he divides 999 by 1, 2, 3, 4, 5, 6, 7, 8, 9, getting the figures 999, 4995, 333, 24975, 1998, 1665, x, 124875, 111." (Smith and Mikami, expanded and corrected)
Smith and Mikami put "x" whenever a decimal does not terminate. In the data, I put -1 instead of "x".
Murai Chuzen concludes that if 1 is divided by 9, 45, 3, 225, 18, 15, 1125, and 1, the results will have one-digit repetends; if 1 is divided by 99, 495, 33, 2475, 198, 165, 12375, and 11, the results will have two-digit repetends; if 1 is divided by 999, 4995, 333, 24975, 1998, 1665, 124875, and 111, the results will have three-digit repetends; etc.

Examples

			9/1 = 9, so a(1) = 9; 9/2 = 4.5, so a(2) = 45; 9/7 does not terminate, so a(7) = -1; 9/8 = 1.125, so a(8) = 1125; 9/9 = 1, so a(9) = 1.
99/1 = 99, so a(10) = 99; 99/2 = 49.5, so a(11) = 495.
		

References

  • Murai Chuzen, Sampo Doshi-mon (Arithmetic for the Young), 1781.

Crossrefs

Showing 1-4 of 4 results.