A332306 a(n) is the least k such that A121663(k) = n.
0, 1, 2, 4, 8, 3, 32, 5, 128, 9, 512, 6, 2048, 33, 10, 65, 32768, 18, 131072, 12, 34, 513, 2097152, 7, 8388608, 2049, 130, 36, 134217728, 11, 536870912, 68, 514, 32769, 40, 19, 34359738368, 131073, 2050, 13, 549755813888, 35, 2199023255552, 516, 136, 2097153
Offset: 1
Examples
The first terms, alongside their binary representations and factorizations, are: n a(n) bin(a(n)) Factorization -- ------ ------------------ ------------- 1 0 0 2 1 1 2 3 2 10 3 4 4 100 4 5 8 1000 5 6 3 11 2*3 7 32 100000 7 8 5 101 2*4 9 128 10000000 9 10 9 1001 2*5 11 512 1000000000 11 12 6 110 3*4 13 2048 100000000000 13 14 33 100001 2*7 15 10 1010 3*5 16 65 1000001 2*8 17 32768 1000000000000000 17 18 18 10010 3*6 19 131072 100000000000000000 19 20 12 1100 4*5
Links
- Rémy Sigrist, PARI program for A332306
Programs
-
PARI
See Links section.
Formula
a(n) = 2^(n-2) iff n is a prime number of the square of a prime number (A000430).
a(n!) = 2^(n-1)-1 for any n > 0.
a(p_1*...*p_k) = 2^(p_1-2)+...+2^(p_k-2) for distinct prime numbers p_1, ..., p_k.
Comments